Page 123 - Special Topic Session (STS) - Volume 3
P. 123
STS518 B.H. Jasiulis G. et al.
2. Bingham N. H. (1971). Factorization theory and domains of attraction for
generalized convolution algebra. Proc. London Math. Sci., Infinite
Dimensional Analysis. Quantum Probability and Related Topics 23(4), 16-
30.
3. Bingham N. H. (1984). On a theorem of Kłosowska about generalized
convolutions. Coll. Math. 48(1), 117-125.
4. Bingham N. H., Goldie C. M. & Teugels J. L. (1987). Regular variation.
Cambridge University Press, Cambridge.
5. Borowiecka-Olszewska M., Jasiulis-Gołdyn B.H., Misiewicz J.K. &
Rosiński J. (2015). Lévy processes and stochastic integral in the sense of
generalized convolution. Bernoulli 21(4), 2513-2551.
6. Jasiulis-Gołdyn B.H. (2016) Kendall random walks. Probab. Math. Stat.
36(1), 165-185.
7. Jasiulis B.H. (2010). Limit property for regular and weak generalized
convolution. J. Theoret. Probab. 23(1), 315-327,
8. Jasiulis-Gołdyn B.H., Kula A. (2012). The Urbanik generalized
convolutions in the noncommutative probability and a forgotten
method of constructing generalized convolution. Proc. Math. Sci. 122(3),
437-458.
9. Jasiulis-Gołdyn B.H., Misiewicz J.K. (2015). Classical definitions of the
Poisson process do not coincide in the case of weak generalized
convolution. Lith. Math. J. 55(4), 518-542.
10. Jasiulis-Gołdyn B.H., Misiewicz J.K., Naskręt K. & Omey E.A.M. (2018).
Renewal theory for extremal Markov sequences of the Kendall type,
submitted, arXiv:https://arxiv.org/pdf/1803.11090.pdf
11. Jasiulis-Gołdyn B.H., Misiewicz J.K. (2015). Weak Lévy-Khintchine
representation for weak infinite divisibility. Theor. Probab. Appl. 60(1),
45-61.
12. Kendall D. G. (1968). Delphic semi-groups, infinitely divisible
regenerative phenomena, and the arithmetic of p-functions. Z.
Wahrscheinlichkeitstheorie und Verw. Gebiete 9(3), 163-195.
13. Kingman J. G. C. (1963). Random Walks with Spherical Symmetry. Acta
Math. 109(1), 11-53.
14. Misiewicz J. K. (2018). Generalized convolutions and Levi-Civita
functional equation. Aequationes Math. 92(5), 911-933.
15. A.J. McNeil, J. Nešlehová. (2009). Multivariate Archimedean copulas, d-
monotone functions and l1-norm symmetric distributions. The Annals of
Statistics 37 (5B), 3059-3097.
16. McNeil A.J., Nešlehová J. (2010). From Archimedean to Liouville Copulas.
J. Multivariate Analysis 101(8), 1771-1790.
112 | I S I W S C 2 0 1 9