Page 153 - Special Topic Session (STS) - Volume 3
P. 153

STS535 Edsel A. P. et al.
            within  each  sub-model could  then  be  performed  separately,  but  note  that
            these  sub-model  likelihood  functions  depend  on  data  from  the  other
            components. Also, because the nonparametric baseline hazard rate functions
            are being evaluated at the effective age functions, to obtain the estimates of
            their  associated  cumulative  hazard  functions,  a  time-change  approach
            implemented in [4] is required. Other inferential aspects will be discussed at
            the WSC talk by the first author.

            References
            1.  P. Andersen, O. Borgan, R. Gill, and N. Keiding. Statistical Models Based
                 on Counting Processes. Springer-Verlag, New York, 1993.
            2.  J. Jacod. Multivariate point processes: predictable projection, radon-
                 nikodym derivatives, representation of martingales. Z. Wahrsch. verw.
                 Geb., 34:225–244, 1975.
            3.  E. Pen˜a and M. Hollander. Mathematical Reliability: An Expository
                 Perspective (eds., R. Soyer, T. Mazzuchi and N. Singpurwalla), chapter 6.
                 Models for Recurrent Events in Reliability and Survival Analysis, pages
                 105–123. Kluwer Academic Publishers, 2004.
            4.  Edsel Pen˜a, Elizabeth Slate, and Juan Ramon Gonzalez. Semiparametric
                 inference for a general class of models for recurrent events. Journal of
                 Statistical Planning and Inference, 137:1727–1747, 2007.








































                                                               142 | I S I   W S C   2 0 1 9
   148   149   150   151   152   153   154   155   156   157   158