Page 208 - Special Topic Session (STS) - Volume 3
P. 208
STS540 Zhi Lin C. et al.
4. Gadre, M.P. & Rattihalli, R.N. (2006). Modified group runs control charts
to detect increases in fraction non conforming and shifts in the process
mean. Commun. Stat. Simul. Comput., 35, 225– 240.
5. Gadre, M.P. & Rattihalli, R.N. (2007). A side sensitive group runs control
chart for detecting shifts in the process mean. Stat. Methods Appl., 16,
27–37.
6. Gadre, M.P., Joshi, K.A. & Rattihalli, R.N. (2010). A side sensitive modified
group runs control chart to detect shifts in the process mean. J. Appl.
Stat., 37, 2073–2087.
7. Lee, L.Y., Khoo, M.B.C. & Yap, E.Y. (2013). A comparison between the
standard deviation of the run length (SDRL) performance of optimal
EWMA and optimal CUSUM charts. J. Qual. Meas. Anal., 9, 1–8.
8. Lim, S.L., Khoo, M.B.C, Yeong, W.C. & Lee, M.H. (2015). Economic and
economic-statisticaldesigns of the side sensitive group runs chart.
Comput. Ind. Eng., 90, 314–325.
9. Page, E.S. (1954). Continuous inspection schemes. Biometrika, 41, 100–
115.
10. Roberts, S.W. (1959). Control chart tests based on geometric moving
averages. Technometrics, 1, 239–250.
11. Wu, Z. & Spedding, T.A. (2000). A synthetic control chart for detecting
small shifts in the process mean. J. Qual. Technol., 32, 32−38.
12. Yew, S.Y., Khoo, M.B.C., Teoh, W.L., The, S.Y. & Yeong, W.C. (2016). A
comparative study of the group runs and side sensitive group runs
control charts. Pertanika J. Sci. Technol., 24, 177–189.
13. You, H.W., Khoo, M.B.C., Castagliola, P. & Ou, Y. (2015). Side sensitive
group runs X chart with estimated process parameters. Comput. Stat., 30,
1245–1278.
197 |I S I W S C 2 0 1 9