Page 256 - Contributed Paper Session (CPS) - Volume 8
P. 256
CPS2274 Nadiah M. et al.
conference on Knowledge discovery and data mining (pp. 293-298).
ACM.
7. Knorr, E. M., & Ng, R. T. (1998). Algorithms for Mining Distance-Based
Outliers in Large Datasets. Proceedings of the 24th VLDB Conference, 98,
392–403.
8. Kontaki, M., Gounaris, A., Papadopoulos, A. N., Tsichlas, K., &
Manolopoulos, Y. (2016). Efficient and flexible algorithms for monitoring
distance-based outliers over data streams. Information Systems, 55, 37–
53.
9. Paper, C., Notes, L., Processing, B. I., & Souiden, I. (2017). Digital
Economy. Emerging Technologies and Business Innovation, 290.
10. Ramaswamy, S., Rastogi, R., & Shim, K. (2000). Efficient algorithms for
mining outliers from large data sets. ACM SIGMOD Record, 427–438.
11. Wang, B., Yang, X. C., Wang, G. R., & Yu, G. (2010). Outlier detection over
sliding windows for probabilistic data streams. Journal of Computer
Science and Technology, 25(3), 389-400
12. Yamanishi, K., & Takeuchi, J. I. (2002). A unifying framework for detecting
outliers and change points from non-stationary time series data. In
Proceedings of the eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (pp. 676-681). ACM.
13. Yang, D., Rundensteiner, E., & Ward, M. O. (2009). Neighbor-based
pattern detection for windows over streaming data. Proceedings of the
12th International Conference on Extending Database Technology
Advances in Database Technology - EDBT ’09, Newyork, 529–540.
245 | I S I W S C 2 0 1 9