Page 114 - Special Topic Session (STS) - Volume 3
P. 114
STS518 Steen T.
References
1. G. Andersen, A. Guionnet and O. Zeitouni, An Introduction to Random
Matrices, Cambridge studies in advanced Math. 118, Cambridge
University Press (2010).
2. O.E. Barndorff-Nielsen and S. Thorbjørnsen, Selfdecomposability and
Lévy processes in free probability, Bernoulli 8 (2002), 323-366.
3. S.T. Belinschi and H. Bercovici, Atoms and regularity for measures in a
partially defined free convolution semigroup, Math. Z. 248 (2004), 665-
674.
4. S.T. Belinschi, M. Bożejko, F. Lehner and R. Speicher, The normal
distribution is ⊞-infinitely divisible, Adv. Math. 226 (2011), 3677–3698.
5. A. Ben Ghorbal and M. Schürman, Non-commutative notions of
stochastic independence, Math. Proc. Cambridge. Philo. Soc. 133 (2002),
531-561.
6. H. Bercovici and V. Pata, Stable Laws and Domains of Attraction in Free
Probability Theory, Ann. Math. 149 (1999), 1023-1060.
7. H. Bercovici and D.V. Voiculescu, Free Convolution of Measures with
Unbounded Support, Indiana Univ. Math. J. 42 (1993), 733-773.
8. H. Bercovici and D.V. Voiculescu, Super convergence to the central limit
and failure of the Cramér's theorem for free random variables, Probab.
Theory Related Fields 103 (1995), 215-222.
9. H. Bercovici and D.V. Voiculescu, Regularity questions for free
convolution, in “Nonself adjoint operator algebras, operator theory, and
related topics” (H. Bercovici and C. Foias editors), Oper. Theory Adv.
Appl. 104, Birkhäuser (1998), 37-47.
10. T. Hasebe, Free infinite divisibility for beta distributions and related ones,
Electr. J. Prob. 19 (2014), 1-33.
11. T. Hasebe and N. Sakuma, Unimodality for free Lévy processes, Ann.
l’Institut Henri Poincaré 53 (2017), 916-936.
12. T. Hasebe, N. Sakuma and S. Thorbjørnsen, The normal distribution is
freely self decomposable, Intern. Math. Research Notices, Volume 2019,
Issue 6 (2019), 1758-1787.
13. T. Hasebe and Y. Ueda, Large time unimodality for classical and free
Brownian motions with initial distributions, ALEA Lat. Am. J. Probab.
Math. Stat. 15 (2018), 353-374.
14. H.-W. Huang, Supports, regularity and -infinite divisibility for measures
of the form ( ⊞ ) ⨄ , arXiv:1209.5787v1.
15. H. Maassen, Addition of freely independent random variables, J. Funct.
Anal. 106 (1992), 409-438.
16. N. Muraki, The five independences as natural products, Inf. Dim. Anal.
Quant. Prob. 6 (2003), 337-371.
17. W. Rudin, Functional Analysis (second edition), McGraw-Hill Inc. (1991).
103 | I S I W S C 2 0 1 9