Page 114 - Special Topic Session (STS) - Volume 3
P. 114

STS518 Steen T.
                  References
                  1.  G. Andersen, A. Guionnet and O. Zeitouni, An Introduction to Random
                      Matrices, Cambridge studies in advanced Math. 118, Cambridge
                      University Press (2010).
                  2.  O.E. Barndorff-Nielsen and S. Thorbjørnsen, Selfdecomposability and
                      Lévy processes in free probability, Bernoulli 8 (2002), 323-366.
                  3.  S.T. Belinschi and H. Bercovici, Atoms and regularity for measures in a
                      partially defined free convolution semigroup, Math. Z. 248 (2004), 665-
                      674.
                  4.  S.T. Belinschi, M. Bożejko, F. Lehner and R. Speicher, The normal
                      distribution is ⊞-infinitely divisible, Adv. Math. 226 (2011), 3677–3698.
                  5.  A. Ben Ghorbal and M. Schürman, Non-commutative notions of
                      stochastic independence, Math. Proc. Cambridge. Philo. Soc. 133 (2002),
                      531-561.
                  6.  H. Bercovici and V. Pata, Stable Laws and Domains of Attraction in Free
                      Probability Theory, Ann. Math. 149 (1999), 1023-1060.
                  7.  H. Bercovici and D.V. Voiculescu, Free Convolution of Measures with
                      Unbounded Support, Indiana Univ. Math. J. 42 (1993), 733-773.
                  8.  H. Bercovici and D.V. Voiculescu, Super convergence to the central limit
                      and failure of the Cramér's theorem for free random variables, Probab.
                      Theory Related Fields 103 (1995), 215-222.
                  9.  H. Bercovici and D.V. Voiculescu, Regularity questions for free
                      convolution, in “Nonself adjoint operator algebras, operator theory, and
                      related topics” (H. Bercovici and C. Foias editors), Oper. Theory Adv.
                      Appl. 104, Birkhäuser (1998), 37-47.
                  10.  T. Hasebe, Free infinite divisibility for beta distributions and related ones,
                      Electr. J. Prob. 19 (2014), 1-33.
                  11.  T. Hasebe and N. Sakuma, Unimodality for free Lévy processes, Ann.
                      l’Institut Henri Poincaré 53 (2017), 916-936.
                  12.  T. Hasebe, N. Sakuma and S. Thorbjørnsen, The normal distribution is
                      freely self decomposable, Intern. Math. Research Notices, Volume 2019,
                      Issue 6 (2019), 1758-1787.
                  13.  T. Hasebe and Y. Ueda, Large time unimodality for classical and free
                      Brownian motions with initial distributions, ALEA Lat. Am. J. Probab.
                      Math. Stat. 15 (2018), 353-374.
                  14.  H.-W. Huang, Supports, regularity and -infinite divisibility for measures

                      of the form  ( ⊞ ) ⨄ , arXiv:1209.5787v1.
                  15.  H. Maassen, Addition of freely independent random variables, J. Funct.
                      Anal. 106 (1992), 409-438.
                  16.  N. Muraki, The five independences as natural products, Inf. Dim. Anal.
                      Quant. Prob. 6 (2003), 337-371.
                  17.  W. Rudin, Functional Analysis (second edition), McGraw-Hill Inc. (1991).


                                                                     103 | I S I   W S C   2 0 1 9
   109   110   111   112   113   114   115   116   117   118   119