Page 39 - Invited Paper Session (IPS) - Volume 1
P. 39

IPS35 Dinov I.D. et al.
            cross-section  your  investigators.  All  these  activities  demand  substantial
            community,  institutional,  state,  federal,  international,  and  philanthropic
            support  to  advance  data  analytic  methods,  enhance  the  computing
            infrastructure, train and support students and fellows, and tackle the Kryder
            Law >> Moore Law trend (Dinov 2014).

            Acknowledgements
            This research is supported in part by NSF grants 1734853, 1636840, 1416953,
            0716055  and  1023115;  NIH  grants  P20  NR015331,  U54  EB020406,  P50
            NS091856,  P30  DK089503,  UL1TR002240;  and  the  Elsie  Andresen  Fiske
            Research Fund.

            References
            1.  Di Martino, A., C.-G. Yan, Q. Li, E. Denio, F. X. Castellanos, K. Alaerts, J. S.
                 Anderson, M. Assaf, S. Y. Bookheimer and M. Dapretto (2014). "The
                 autism brain imaging data exchange: towards a large-scale evaluation of
                 the intrinsic brain architecture in autism." Molecular psychiatry 19(6):
                 659.
            2.  Dinov, I. (2016). "Methodological Challenges and Analytic Opportunities
                 for Modeling and Interpreting Big Healthcare Data." GigaScience 5(12):
                 1-15.
            3.  Dinov, I. (2018). Data Science and Predictive Analytics: Biomedical and
                 Health Applications using R, Springer International Publishing.
            4.  Dinov, I., Petrosyan, P, Liu, Z, Eggert, P, Hobel, S, Vespa, P, Woo, Moon S,
                 Van Horn, JD, Franco, J, and Toga, AW. (2014). "High-Throughput
                 Neuroimaging-Genetics Computational Infrastructure." Frontiers in
                 Neuroinformatics 8(41): 1-11.
            5.  Dinov, I. D. (2016). "Volume and value of big healthcare data." Journal of
                 Medical Statistics and Informatics 4(1): 1-7.
            6.  Dwork, C. (2009). The differential privacy frontier. Theory of
                 Cryptography Conference, Springer.
            7.  Feller, J. and B. Fitzgerald (2002). Understanding open source software
                 development, Addison-Wesley London.
            8.  Gao, C., H. Sun, T. Wang, M. Tang, N. I. Bohnen, M. L. T. M. Müller, T.
                 Herman, N. Giladi, A. Kalinin, C. Spino, W. Dauer, J. M. Hausdorff and I. D.
                 Dinov (2018). "Model-based and Model-free Machine Learning
                 Techniques for Diagnostic Prediction and Classification of Clinical
                 Outcomes in Parkinson’s Disease." Scientific Reports 8(1): 7129.
            9.  Gentry, C. (2009). A fully homomorphic encryption scheme, Stanford
                 University.
            10.  Huang, Z., H. Zhang, J. Boss, S. A. Goutman, B. Mukherjee, I. D. Dinov, Y.
                 Guan and A. L. S. C. T. C. for the Pooled Resource Open-Access (2017).

                                                               28 | I S I   W S C   2 0 1 9
   34   35   36   37   38   39   40   41   42   43   44