Page 125 - Contributed Paper Session (CPS) - Volume 1
P. 125
CPS1196 Song X. et al.
References
1. Aghabozorgi, 'S., Shirkhorshidi, A.S. and Wah, T.Y. (2015). Time-series
clustering–A decade review. Information Systems, 53, 16-38.
2. Alder, S., Shao, L. and Zilibotti, F. (2016). Economic reforms and industrial
policy in a panel of Chinese cities. Journal of Economic Growth, 4, 305-
349.
3. Berndt, D.J. and Clifford, J. (1994). Using dynamic time warping to find
patterns in time series. KDD workshop, 16, 359-370.
4. Chan, K.W. and Wan, G. (2017). The size distribution and growth pattern
of cities in China, 1982– 2010: Analysis and policy implications. Journal of
the Asia Pacific Economy, 1, 136-155.
5. Démurger, S. (2001). Infrastructure development and economic growth:
an explanation for regional disparities in China. Journal of Comparative
economics, 29, 95-117.
6. Jain, A.K., Murty, M.N. and Flynn, P.J. (1999). Data clustering: a review.
ACM computing surveys(CSUR), 3, 264-323.
7. Jeong, Y.S., Jeong, M.K. and Omitaomu, O.A. (2011). Weighted dynamic
time warping for time series classification. Pattern Recognition, 9, 2231-
2240.
8. Izakian, H., Pedrycz, W. and Jamal, I. (2015). Fuzzy clustering of time
series data using dynamic time warping distance. Engineering
Applications of Artificial Intelligence, 39, 235-244.
9. Wu, Y. (2016). China's Capital Stock Series by Region and Sector.
Frontiers of Economics in China,1, 156-172.
114 | I S I W S C 2 0 1 9