Page 125 - Contributed Paper Session (CPS) - Volume 1
P. 125

CPS1196 Song X. et al.
            References
            1.  Aghabozorgi, 'S., Shirkhorshidi, A.S. and Wah, T.Y. (2015). Time-series
                clustering–A decade review. Information Systems, 53, 16-38.
            2.  Alder, S., Shao, L. and Zilibotti, F. (2016). Economic reforms and industrial
                policy in a panel of Chinese cities. Journal of Economic Growth, 4, 305-
                349.
            3.  Berndt, D.J. and Clifford, J. (1994). Using dynamic time warping to find
                patterns in time series. KDD workshop, 16, 359-370.
            4.  Chan, K.W. and Wan, G. (2017). The size distribution and growth pattern
                of cities in China, 1982– 2010: Analysis and policy implications. Journal of
                the Asia Pacific Economy, 1, 136-155.
            5.  Démurger, S. (2001). Infrastructure development and economic growth:
                an explanation for regional disparities in China. Journal of Comparative
                economics, 29, 95-117.
            6.  Jain, A.K., Murty, M.N. and Flynn, P.J. (1999). Data clustering: a review.
                ACM computing surveys(CSUR), 3, 264-323.
            7.  Jeong, Y.S., Jeong, M.K. and Omitaomu, O.A. (2011). Weighted dynamic
                time warping for time series classification. Pattern Recognition, 9, 2231-
                2240.
            8.  Izakian, H., Pedrycz, W. and Jamal, I. (2015). Fuzzy clustering of time
                series data using dynamic time warping distance. Engineering
                Applications of Artificial Intelligence, 39, 235-244.
            9.  Wu, Y. (2016). China's Capital Stock Series by Region and Sector.
                Frontiers of Economics in China,1, 156-172.

































                                                               114 | I S I   W S C   2 0 1 9
   120   121   122   123   124   125   126   127   128   129   130