Page 187 - Contributed Paper Session (CPS) - Volume 3
P. 187

CPS1988 Saggou Hafida H. et al.
            vacation  time  and  if  () =  6 ,  we  define   ()  as  the  elapsed  second
                                                           6
            verification delay time.

            3.   Analysis of the steady-state probabilities
                We investigate in this section the steady-state distribution of the system.
            The  conditional  completion  rates  for  the  repeated  attempts  of  transit
            customers, for the service of transit customers, for the service of recurrent
            customers, for the first verification delay, for repair, for vacation and for second
            verification delay times are given.

            Theorem 1. Under the stability condition, the marginal Probability Generating
            Functions of the server’s state queue size distribution are as follow:

                                                    
                            (  +  )[(  +  ) − ∅() 0  ]  1  −   (  +  )
              ()  =
             0                                                 (  +  )
                    (1  −    (  +  ))∅() − (  +  )[ −   (  +  )()]


                                                                
                       (  +  )   (  +  )[(1 −  ()) + (1 −  2 ())] 0  1  −  1 ()
                 () =
                     1
                       (1  −   (  +  ))∅() − (  +  )[ −   (  +  )()]  ()

                             (  +  )  (  +  )[() −  ] 0  −1  1  −  2 ()
                 () =
                     2
                       (1  −    (  +  ))∅() − (  +  )[ −   (  +  )()]  ()

                                                              
                         (  +  )   (  +  )[(1 − ()) + (1  −  2 ())] 0  1  −  1 ()  1 −   1 (())
                  () =                                              ×
                       1,1
                         (1  −    (  +  ))∅() − (  +  )[ −   (  +  )()]  ()  ()

                              (  +  )  (  +  )[() −  ] 0   −1  1  −  2 ()  1 −   1 (())
                       1,2 () =                           ()   ×  ()
                         (1  −   (  +  ))∅() − (  +  )[ −   (  +  )()]

                 2,1 ()


                 2,2 ()


                 1 ()







                                                                  
                            (  +  )   (  +  )[(1 − ()) +  (1  −  2 ())] 0  1  −   (())
                  () = (1 − )                                              ()
                 V s                                                           1
                             (1  −    (  +  ))∅() − (  +  )[ −   (  +  )()]  ()


                                                               176 | I S I   W S C   2 0 1 9
   182   183   184   185   186   187   188   189   190   191   192