Page 191 - Contributed Paper Session (CPS) - Volume 3
P. 191
CPS1988 Saggou Hafida H. et al.
References
1. Aissani, A. (1988). On the M/G/1/1 queueing system with repeated
orders and unreliable, J. Technology.6, 93-123.
2. Artalejo, J.R. (1999). Accessible bibliography on retrial queues, Math.
Comput. Model 30, 1-6.
3. Artalejo, J.R., Gomez´ − Corral, A. (2008). Retrial queueing systems,
Springer-Verlag, Berlin.
4. Atencia, I., Moreno, P. (2005). A single retrial queue with general retrial
times and Bernoulli schedule, Appl.Math´emat.Comp 162, 855–880.
5. Choi, B.D., Kulkarni, V.G. (1992). Feedback retrial queueing systems,
Stochastic Model Relat Field,pp 93-105.
6. Djellab, N.V. (2002). On the M/G/1 retrial queue subjected to
breakdowns, RAIRO Oper. Res. 36, 299-310.
7. Falin, G.I. (1990). A survey of retrial queues, Queueing Syst. 7, 127-168.
8. Falin, G.I., Templeton, J.G.C. (1997). Retrial Queues, Chapman and Hall,
London.
9. Farahmand, K. (1996). Single line queue with recurrent repeated
demands, Queueing Systems 22, 425–435.
10. Fayolle, G. (1986). A simple Telephone Exchange with Delayed
Feedbacks, Teletraffic Analysis and Computer Performance Evaluation.
11. Gomez-Corral, A. (1999). Stochastic analysis of a single server retrial
queue with general retrial times, Nav. Res. Logis. 46, 561-581.
12. Grey, W.J., Wang, P.P., Scott, M.K. (2000). A vacation queueing model
with service breakdowns, Appl. Math. Model. 24 391400.
13. Kulkarni, V. G., Liang, H. M. (1997). Retrial queues revisited. In J. H.
Dshalalow (Ed.), Frontiers in queueing: Models and applications in
science and engineering (pp. 1934). Boca Raton: CRC Press.
14. Saggou, H., Sadeg, I., Ourbih-Tari, M ,Bourennane,E.B.(2018).
Performance measures of M/G/1 retrial queues with recurrent
customers, breakdowns and general delays, Communications in
Statistics-Theory and Methods,1-16.
15. Lee, H.S. (1995). Optimal control of the M/G/1/K queue with multiple
server vacations, Comput. Oper. Res. 22 (5) 543552.
180 | I S I W S C 2 0 1 9