Page 155 - Contributed Paper Session (CPS) - Volume 5
P. 155

CPS1159 Philip Hans Franses et al.
                 August, year t    0.576   (0.310)   0.776   (0.101)     0.083
                 September, year t   0.602   (0.302)   0.773   (0.098)   0.066
                 October, year t   0.516   (0.291)   0.799   (0.094)     0.102
                 November, year t   0.535   (0.278)   0.802   (0.090)    0.087
                 December, year t   0.516   (0.272)   0.820        (0.088)   0.115

            References
            1.  Bertrand, P. and F. Goupil (1999), Descriptive statistics for symbolic data,
                 in Symbolic Data Analysis (H.H. Bock and E. Diday, editors), Berlin:
                 Springer Verlag, 103-124.
            2.  Billard, L. and E. Diday (2000), Regression analysis for interval-valued
                 data, in Data Analysis, Classification, and Related Methods (H.A.L. Kiers,
                 J.-P. Rasson, P.J.F. Groenen and M. Schader, editors), Berlin: Springer
                 Verlag, 369-374.
            3.  Billard, L. and E. Diday (2003), From the statistics of data to the statistics
                 of knowledge, Journal of the American Statistical Association, 98, 470-
                 487.
            4.  Billard, L. and E. Diday (2007), Symbolic Data Analysis: Conceptual
                 Statistics and Data Mining, Chichester: Wiley
            5.  Capistran, C., and A. Timmermann (2009), Disagreement and biases in
                 inflation expectations, Journal of Money, Credit and Banking 41 (2-3),
                 365-396.
            6.  Clements, M.P. (2010), Explanations of the inconsistencies in survey
                 respondents forecasts, European Economic Review, 54 (4), 536-549.
            7.  Clements, M.P. (2017), Do forecasters target first or later releases of
                 national accounts data? ICMA Centre Discussion Papers in Finance icma-
                 dp2017-03, Henley Business School, Reading University.
            8.  Dovern, F., U. Fritsche and J. Slacalek (2012), Disagreement among
                 forecasters in G7 countries, The Review of Economics and Statistics 94
                 (4), 1081-1096.
            9.  Efron, B. and R.J. Tibshirani (1993). An Introduction to the Bootstrap.
                 London: CRC Press.
            10.  Engelberg, J. C.F. Manski, and J. Williams (2009), Comparing the point
                 predictions and subjective probability distributions of professional
                 forecasters, Journal of Business & Economic Statistics, 27 (1), 30-41.
            11.  Genre, V., G. Kenny, A. Mayler and A. Timmermann (2013), Combining
                 expert forecasts: Can anything beat the simple average? International
                 Journal of Forecasting 29 (1), 108-121.
            12.  Lahiri, K., and X. Sheng (2010), Measuring forecast uncertainty by
                 disagreement: The missing link, Journal of Applied Econometrics 25 (4),
                 514-538.
            13.  Laster, D., P. Bennett and I.S. Geoum (1999), Rational bias in
                 macroeconomic forecasts, Quarterly Journal of Economics 114 (1),

                                                               144 | I S I   W S C   2 0 1 9
   150   151   152   153   154   155   156   157   158   159   160