Page 95 - Invited Paper Session (IPS) - Volume 1
P. 95
IPS98 Luciana D. V. at al.
20. Lunardon, N., Menardi, G., and Torelli, N. (2014). ROSE: A Package for
Binary Imbalanced Learning. R Journal, Vol. 6, No. 1, pp. 82-92.
21. Menardi, G., and Torelli, N. (2014). Training and assessing classification
rules with imbalanced data. Data Mining and Knowledge Discovery, Vol.
28, No, 1, pp 92–122.
22. Pearl, J. (2009). Causality: Models, Reasoning, and Inference, 2 ed.,
nd
Cambridge University Press, UK.
23. Pfeffermann, D. (2013). New Important Developments in Small Area
Estimation, Statistical Science, 28, pp. 40-68.
24. Pourret, O, Naïm P. and Marcot, B. (2008). Bayesian Networks: A Practical
Guide to Applications, John Wiley and Sons, Chichester: UK.
25. Stander, J., Dalla Valle, L. and Cortina Borja, M. (2016a). Sentiments,
surnames and so long EU. Communicator, Special Supplement: Science
Communication, Autumn 2016, pp. 19–23.
26. Stander, J., Dalla Valle, L., Eales, J., Baldino, A. and Cortina Borja, M.
(2016b). The EU referendum: extracting insights from Facebook using R,
Significance Magazine, available on-line at
https://www.statslife.org.uk/politics/2889-what-information-can-we-
extract-from-social-media-about-the-uk-s-eu-referendum
27. Zhang, X., Fuehres, H. and Gloor, P.A. (2011). Predicting stock market
indicators through twitter “I hope it is not as bad as I fear”. Procedia –
Social and Behavioral Sciences, Vol. 26, pp. 55-62.
84 | I S I W S C 2 0 1 9