Page 95 - Invited Paper Session (IPS) - Volume 1
P. 95

IPS98 Luciana D. V. at al.
            20.  Lunardon, N., Menardi, G., and Torelli, N. (2014). ROSE: A Package for
                 Binary Imbalanced Learning. R Journal, Vol. 6, No. 1, pp. 82-92.
            21.  Menardi, G., and Torelli, N. (2014). Training and assessing classification
                 rules with imbalanced data. Data Mining and Knowledge Discovery, Vol.
                 28, No, 1, pp 92–122.
            22.  Pearl, J. (2009). Causality: Models, Reasoning, and Inference, 2  ed.,
                                                                            nd
                 Cambridge University Press, UK.
            23.  Pfeffermann, D. (2013). New Important Developments in Small Area
                 Estimation, Statistical Science, 28, pp. 40-68.
            24.  Pourret, O, Naïm P. and Marcot, B. (2008). Bayesian Networks: A Practical
                 Guide to Applications, John Wiley and Sons, Chichester: UK.
            25.  Stander, J., Dalla Valle, L. and Cortina Borja, M. (2016a). Sentiments,
                 surnames and so long EU. Communicator, Special Supplement: Science
                 Communication, Autumn 2016, pp. 19–23.
            26.  Stander, J., Dalla Valle, L., Eales, J., Baldino, A. and Cortina Borja, M.
                 (2016b). The EU referendum: extracting insights from Facebook using R,
                 Significance Magazine, available on-line at
                 https://www.statslife.org.uk/politics/2889-what-information-can-we-
                 extract-from-social-media-about-the-uk-s-eu-referendum
            27.  Zhang, X., Fuehres, H. and Gloor, P.A. (2011). Predicting stock market
                 indicators through twitter “I hope it is not as bad as I fear”. Procedia –
                 Social and Behavioral Sciences, Vol. 26, pp. 55-62.






































                                                               84 | I S I   W S C   2 0 1 9
   90   91   92   93   94   95   96   97   98   99   100