Page 123 - Special Topic Session (STS) - Volume 3
P. 123

STS518 B.H. Jasiulis G. et al.
            2.  Bingham N. H. (1971). Factorization theory and domains of attraction for
                 generalized convolution algebra. Proc. London Math. Sci., Infinite
                 Dimensional Analysis. Quantum Probability and Related Topics 23(4), 16-
                 30.
            3.  Bingham N. H. (1984).  On a theorem of Kłosowska about generalized
                 convolutions. Coll. Math. 48(1), 117-125.
            4.  Bingham N. H., Goldie C. M. & Teugels J. L. (1987). Regular variation.
                 Cambridge University Press, Cambridge.
            5.  Borowiecka-Olszewska M., Jasiulis-Gołdyn  B.H., Misiewicz  J.K. &
                 Rosiński J. (2015). Lévy processes and stochastic integral in the sense of
                 generalized convolution. Bernoulli  21(4), 2513-2551.
            6.  Jasiulis-Gołdyn  B.H. (2016) Kendall random walks. Probab. Math. Stat.
                 36(1), 165-185.
            7.  Jasiulis B.H. (2010). Limit property for regular and weak generalized
                 convolution. J. Theoret. Probab. 23(1), 315-327,
            8.  Jasiulis-Gołdyn  B.H., Kula A. (2012). The Urbanik generalized
                 convolutions in the noncommutative probability and a forgotten
                 method of constructing generalized convolution. Proc. Math. Sci. 122(3),
                 437-458.
            9.  Jasiulis-Gołdyn  B.H., Misiewicz  J.K. (2015). Classical definitions of the
                 Poisson process do not coincide in the case of weak generalized
                 convolution. Lith. Math. J.  55(4), 518-542.
            10.  Jasiulis-Gołdyn  B.H., Misiewicz  J.K., Naskręt  K. & Omey E.A.M. (2018).
                 Renewal theory for extremal Markov sequences of the Kendall type,
                 submitted, arXiv:https://arxiv.org/pdf/1803.11090.pdf
            11.  Jasiulis-Gołdyn  B.H., Misiewicz  J.K. (2015). Weak Lévy-Khintchine
                 representation for weak infinite divisibility. Theor. Probab. Appl.  60(1),
                 45-61.
            12.  Kendall D. G. (1968). Delphic semi-groups, infinitely divisible
                 regenerative phenomena, and the arithmetic of p-functions. Z.
                 Wahrscheinlichkeitstheorie und Verw. Gebiete  9(3), 163-195.
            13.  Kingman J. G. C. (1963). Random Walks with Spherical Symmetry. Acta
                 Math. 109(1), 11-53.
            14.  Misiewicz  J. K. (2018).  Generalized convolutions and Levi-Civita
                 functional equation. Aequationes Math. 92(5), 911-933.
            15.  A.J. McNeil, J. Nešlehová. (2009). Multivariate Archimedean copulas, d-
                 monotone functions and l1-norm symmetric distributions. The Annals of
                 Statistics 37 (5B), 3059-3097.
            16.  McNeil A.J., Nešlehová J. (2010).  From Archimedean to Liouville Copulas.
                 J. Multivariate Analysis 101(8), 1771-1790.






                                                               112 | I S I   W S C   2 0 1 9
   118   119   120   121   122   123   124   125   126   127   128