Page 108 - Special Topic Session (STS) - Volume 4
P. 108

STS566 K. Prokopenko et al.
                   Tab.2. Payments forecast accuracy estimations of XG BOOST, LSTM and CS ARMA predictors.
                   For each class of predictors and accuracy measure two best values are highlighted with bold
                            font. Cells with absolute best values are highlighted with gray shading.

                           Descr  Incoming   Incomi  Incomi  Incomi  Outgoin  Outgoin  Outgoin  Outgoin
                           iption  payments   ng   ng   ng     g      g       g       g
                                 MAPE (%)   payme  payme  payme  paymen  paymen  paymen  payment
                    Method
                                           nts   nts R2   nts   ts MAPE  ts   ts R2   s RSD
                                           NRMS         RSD    (%)    NRMSD           (%)
                                           D (%)        (%)           (%)
                     XG
                    BOOST
                   (n_estim  Python xgBoost library, gb.XGBRegressor(learning_rate=0.08, gamma=0, subsample=0.75,
                               colsample_bytree=1), training sample size = 1004, testing sample size = 180, date
                    ators,
                    max_de      features: “month, month day, year week, month week, week day, working day”
                     pth)
                    (50, 2)      170.58    39.68   0.60   27.66   105.68   40.94   0.60   23.24
                   (100, 2)      103.20    38.43   0.63   28.37   57.13   39.35   0.64   25.53
                   (100, 3)      64.47     38.17   0.63   29.13   66.73   39.08   0.65   25.63
                    (100, 4)      60.98    38.89   0.61   30.25   114.63   40.13   0.63   26.32
                    (100, 5)      62.69    39.75   0.60   31.46   113.51   41.01   0.62   27.16
                    (250, 3)      62.51    39.35   0.61   30.81   78.54   40.95   0.62   27.21
                    (500, 3)      62.64    40.32   0.59   32.23   143.17   42.37   0.59   28.57
                    (500, 5)      85.52    42.66   0.54   35.65   70.24   43.99   0.57   31.15
                            Python Keras library, LSTM. Optimizer = “Adam”, Loss function = “MSE”, Batch size = 20,
                    LSTM
                               learning rate = 0.005, training sample size = 1004, testing sample size = 180, date
                    (hidden   features: “month, month day, year week, month week, week day, working day”, training
                    layers)
                                    condition: while number of epochs <= 100 and EVS Error <= 0.81
                     (4x4)           66.94   37.72   0.65   29.58   185.78   36.86   0.69   26.35
                     (8)             45.49   37.57   0.65   29.11   62.20   35.84   0.72   26.14
                    (8x8)           44.78   37.70   0.65   29.26   105.04   35.70   0.71   26.19
                     (16)            45.64   37.94   0.64   29.35   46.69   35.93   0.71   26.18
                    (16x16)         44.96   37.82   0.64   29.67   226.64   36.05   0.71   26.14
                     (32)            46.10   37.87   0.64   29.33   49.53   35.8   0.71   26.08
                     (64)            49.66   38.39   0.63   29.86   42.56   36.65   0.70   26.92
                     (128)           46.53   37.93   0.64   29.89   62.95   36.96   0.69   26.58
                     CS
                    ARMA       CS ARMA (p, P, q, Q, L=52), training sample size = 1004, testing sample size = 180
                    (p=P,
                    q=Q)
                     (1, 1)          36.94   34.44   0.71   28.91   47.22   31.86   0.78   28.23
                     (2,1)          36.92   34.50   0.71   28.99   47.27   31.91   0.78   28.29
                    (2, 2)           38.17   34.49   0.71   29.11   47.93   31.44   0.78   27.73
                     (3, 3)          38.68   34.88   0.70   29.64   46.64   31.95   0.78   28.27
                    (3, 1)          36.86   34.52   0.71   29.05   47.14   31.92   0.78   28.32
                     (1, 3)          38.65   34.64   0.71   29.30   46.13   31.68   0.78   27.94

                  5.  Conclusion
                      The data sample for this research shows that cash usage shows annually,
                  monthly  and  weekly  distinctive  patterns.  Therefore,  forecasting  can  be
                  executed with a horizon of months or years. The newly developed Complex
                  Seasonal ARMA has been compared against two existing models: XG BOOST
                  decision trees and LSTM recurrent neural network. For the three algorithms
                  different  input  parameters  have  been  used  and  this  has  been  measured

                                                                      97 | I S I   W S C   2 0 1 9
   103   104   105   106   107   108   109   110   111   112   113