Page 65 - Contributed Paper Session (CPS) - Volume 3
P. 65

CPS1944 Oyelola A.
            9.  Enwere,  G.,  et  al.,  Epidemiology  and  clinical  features  of  pneumonia
                according to radiographic findings in Gambian children. Tropical medicine
                & international health, 2007. 12(11): p. 1377-1385.
            10. Murdoch,  K.M.,  et  al.,  What  is  the  seasonal  distribution  of  community
                acquired  pneumonia  over  time?  A  systematic  review.  Australasian
                Emergency Nursing Journal, 2014. 17(1): p. 30-42.
            11. Skull,  S.A.,  et  al.,  ICD-10  codes  are  a  valid  tool  for  identification  of
                pneumonia in hospitalized patients aged > or = 65 years. Epidemiol Infect,
                2008. 136(2): p. 232-40.
            12. Skull,  S.A.,  et  al.,  Hospitalized  community-acquired  pneumonia  in  the
                elderly: an Australian case-cohort study. Epidemiol Infect, 2009. 137(2): p.
                194-202.
            13. Gasparrini,  A.,  Distributed Lag  Linear  and  Non-Linear  Models  in  R:  The
                Package dlnm. JOURNAL OF STATISTICAL SOFTWARE, 2011. 43(8): p. 1-20.
            14. Gasparrini,  A.,  Modeling  exposure–lag–response  associations  with
                distributed lag non‐linear models. Statistics in Medicine, 2014. 33(5): p.
                881-899.
            15. Gasparrini, A., B. Armstrong, and M.G. Kenward, Distributed lag non‐linear
                models. Statistics in medicine, 2010. 29(21): p. 2224-2234.
            16. Gasparrini, A., et al., A penalized framework for distributed lag non‐linear
                models. Biometrics, 2017. 73(3): p. 938-948.
            17. Adegboye,  O.  and  M.  Adegboye,  Spatially  correlated  time  series  and
                ecological  niche  analysis  of  cutaneous  leishmaniasis  in  Afghanistan.
                International Journal of Environmental Research and Public Health, 2017.
                14(3): p. 309.
            18. Gasparrini, A. and M. Leone, Attributable risk from distributed lag models.
                BMC Medical Research Methodology, 2014. 14(1): p. 55-55.
            19. Gasparrini, A., et al., Mortality risk attributable to high and low ambient
                temperature:  a  multicountry  observational  study.  The  Lancet,  2015.
                386(9991): p. 369-375.
            20. R Core Team, R: A language and environment for statistical computing. R
                Foundation for Statistical Computing, Vienna, Austria. 2017.
            21. Troeger, C., et al., Estimates of the global, regional, and national morbidity,
                mortality,  and  aetiologies  of  lower  respiratory  tract  infections  in  195
                countries: a systematic analysis for the Global Burden of Disease Study
                2015. The Lancet Infectious Diseases, 2017. 17(11): p. 1133-1161.
            22. Torzillo,  P.,  et  al.,  Etiology  of  acute  lower  respiratory  tract  infection  in
                Central  Australian  Aboriginal  children.  The  Pediatric  infectious  disease
                journal, 1999. 18(8): p. 714-721.
            23. Paynter,  S.,  et  al.,  Childhood  pneumonia:  a  neglected,  climate-sensitive
                disease? The lancet, 2010. 376(9755): p. 1804-1805.



                                                                54 | I S I   W S C   2 0 1 9
   60   61   62   63   64   65   66   67   68   69   70