Page 33 - Contributed Paper Session (CPS) - Volume 5
P. 33
CPS657 Folorunso Serifat A. et al.
From the results above, both from the simulated data and the real life data
set, the GGGMCM performs better than the existing mixture cure models
considered.
References
1. Berkson J. and Gage R.P. (1952). \textit{Survival curve for cancer patients
following treatment.Journal of the American Statistical Association,
47:501-515}
2. Boag J.W (1949). Maximum likelihood estimates of the proportion of
patients cured by cancer therapy. Journal of the Royal Statistical Society.
Series B (Methodological), 11(1):15-53, 1949.
3. De Angelis R, Capocaccia R, Hakulinen T, Soderman B, Verdecchia A.
Mixture models for cancer survival analysis: application to population-
based data with covariates. Statistics in Medicine 1999; 18:441454.
4. Elangovan R. and Jayakumar B. (2016). Cure Rate Models. Asia Pacific
Journal of Research Vol: I. Issue XXXVIII, April 2016.
5. Karri Seppa, Timo Hakulinen, Hyon-Jung Kim and Esa Lr (2010). Cure
fraction model with random effects for regional variation in cancer
survival. Statistical in Medicine. John Wiley \& Sons, Ltd. DOI:
10.1002/sim.4046.
6. Lambert PC, Thompson JR, Weston CL, Dickman PW. (2007) Estimating
and modeling the cure fraction in population-based cancer survival
analysis. Biostatistics 2007; 8:576594. DOI: 10.1093/biostatistics/kxl030.
7. Verdecchia A, De Angelis R, Capocaccia R, Sant M, Micheli A, Gatta G,
Berrino F (1998). The cure for colon cancer: results from the EUROCARE
study. International Journal of Cancer; 7:322329.
8. Verdecchia A, De Angelis R, Capocaccia R, Sant M, Micheli A, Gatta G,
Berrino F (1998). The cure for colon cancer: results from the EUROCARE
study. \textit{International Journal of Cancer}; 7:322-329.
9. Wei-Wen Hsu, David Todem, and KyungMann Kim (2016). A Sup-Score
Test for the Cure Fraction in Mixture Models for Long-Term Survivors.
Biometrics DOI: 10.1111/biom.12514
10. Yakovlev, A.Y., Tsodikov, A.D., Bass, L., (1993). \textit{A stochastic-model
of hormesis. Mathematical Biosciences 116 (2)
22 | I S I W S C 2 0 1 9