Page 123 - Invited Paper Session (IPS) - Volume 2
P. 123

IPS 188 G. P. Samanta
                  Table 2: Unit-Root Tests – Annual Inflation Rate/Change in Google Index
                             Augmented Dickey-Fuller             Phillips - Perron
              Variable       Unit-Root Test   Test for Trend   Unit-Root Test   Test for Trend
                      Optimal   Test   p-  Test   p-  Band-  Test   p-value   Test   p-
                       Lag                           width
                            Statistics   value   Statistics   value   Statistics   Statistics   value
             (A)   Annual Inflation Rate/Annual Percentage Change
               gCPI-C    1   -3.1547    0.1018    -2.1941    0.0316    3   -2.3619    0.3961    -1.4354    0.1556

               gCPI-U    4   -1.8559    0.6669    -0.7415    0.4610    5   -1.8075   0.6912    -0.5764    0.5662

              gGMPrice    0   -5.3040    0.0002    0.0916    0.9273    1   -5.3040    0.0002    0.0916    0.9273

              gGMInfl    0   -2.2835    0.4373    -0.8676    0.3885    4   -2.5811    0.2900    -0.8676    0.3885

             (B)   First-Difference Series of Variable at (A) above
              ∆gCPI-C    11   -4.3419    0.0052    1.5623    0.1248    13   -6.2063   0.0000   0.7070    0.4819

              ∆gCPI-U    1   -6.6947    0.0000   1.0733    0.2869    13   -5.9064    0.0000   1.0946    0.2774

             ∆gGMPrice    1   -9.1522    0.0000   0.1058    0.9161    26   -20.2929    0.0001    -0.1534   0.8785

              ∆gGMInfl    0   -7.8708    0.0000   -0.2613    0.7946    2   -7.8397    0.0000   -0.2613    0.7946


            3.2  Predictive Ability - Granger Causality Tests
                The predictive or forecasting ability of Google trend data is assessed under
            the Granger Causality framework (Guzmán (2011). This technique is also useful
            to test if past price situation or realised inflations have any bearing on volume
            of internet search. The Granger causality tests for a pair of variables, say Xt and
            Yt are carried out based on following general equations.
                                              l
                             Xt = α0 +  ∑ i=1 i Xt−i + ∑ j=1  Yt−j + εt                                     ….. (5)
                                  l
                                 l
                           Yt = α0 +  ∑ i=1 i Xt−i + ∑ j=1  Yt−j + εt                                                …….(6)
                                             l
            Where, αi’s, i=0,1, ….. and βj’s, j=1,2,…. are unknown constants; 1 is suitable
            chosen positive integer; and εt is usual residual/error series.
               We  examine  causal  relationship  between  some  form  of  inflation  or
            transformed  price  indices  and  Google  search  indices  for  relevant  search
            words. In particular, we considered two price indices, viz., CPI-C and CPI-U,
            and two Google search indicators, viz., GMPrice and GMInfl.
                              Table 5: Predictive Power – Granger Causality
               Google
                                                                          F-
               Search             Null Hypothesis           Obs  Lag   Statistics  P-Value
                Data
            gGMPrice    gGMPrice does not Granger Cause
                        gCPI-C                               66    9   1.9125    0.0732
                        gCPI-C does not Granger cause        66    9   2.0230    0.0575
                        gGMPrice
                        gGMPrice does not Granger Cause      72    3   0.6434    0.5899
                        gCPI-U
                        gCPI-U does not Granger cause
                        gGMPrice                             72    3   3.3392    0.0246



                                                               110 | I S I   W S C   2 0 1 9
   118   119   120   121   122   123   124   125   126   127   128