Page 115 - Special Topic Session (STS) - Volume 1
P. 115

STS410 Abdul Ghapor H. et al.
                   5,     10,   15   and   20. For each value of  , the sample size n =20, 30, 50, 70,

            130 and 150 are considered for the simulation. With the assumption of   
            , the procedures are described below.
               Step 1: Generate the values of X variable from the von Mises distribution
               of VM  3,2   and for the size of n = 20, 30, 50, 70, 100, 130 and 150; and
                        5, 10,15   and   20, respetively. Find Y according to the generated X based
               on the model Y      X   (mod 2 ) .
               Step 2: The variables X and Y are considered with generated random error
               terms  of  where  x   X    and y   Y   i   for  i 1  2 ,  ,..., n .  The  error
                                       i
                                  i
                                                   i
                                                       i
                                           i
               terms  are   i  ~VM  , 0 (  )   and   i  ~VM  , 0 (  )  ,  respectively  where     . 
               The variables are fitted to LFRM with parameter estimation as described in
               Section 4.2.
               Step 3: The values of functional mean circular error cosine (FMCEC) are
               calculated  for  all  observations.  The  estimation  of  X  for  this  equal  error
               concentration case is given by                         
                                                  ˆ
                                                               ˆ 
                                ˆ
                               X   X ˆ 10    sin x   X  0 i   sin  y   X ˆ  0 i  .
                                                            i
                                               i
                                                  ˆ
                                 1 i
                                                                ˆ 
                                          cos x   X  0 i   cos  y   X ˆ  0 i  
                                               i
                                                            i
               Step 4: Omit the i  observation of the generated data, where i=1, 2, 3, …,n
                                th
               to obtain FMCEC(-i). Repeat this step for all i observations to obtain the set
               of values for FMCEC(-i).
               Step 5: Calculate the absolute difference between FMCEC and FMCEC(-i).
               Then, find value of  FDMCEC (  ) i    FMCEC   FMCEC (  ) i    for all i.
               Step 6: Repeat steps 1-5 for 500 simulations for each n and  and note
               the       values      5%        upper       percentiles      of      the
                FDMCEC    max FMCEC    FMCEC   (  ) i   to construct the cut-off equation
               based on the significance level of interest. These values of upper percentiles
               may  be  used  as  the  cut-off  equations  in  identifying  the  outlier  for  the
               unreplicated LFRM for equal error concentration parameters. Table 1 shows
               the values of FDMCEC based on 5% upper percentile.

                   Table 1 The values of 5% percentile of FDMCEC for equal error concentration
                       n          =5        =10       =15        =20
                       20        0.0256    0.0103      0.0068      0.0050
                       30        0.0158    0.0080      0.0050      0.0037
                       50        0.0198    0.0052      0.0034      0.0024
                       70        0.0122    0.0036      0.0023      0.0019
                       100       0.0119    0.0029      0.0019      0.0013
                       130       0.0091    0.0023      0.0015      0.0011
                       150       0.0081    0.0018      0.0013      0.0010



                                                               104 | I S I   W S C   2 0 1 9
   110   111   112   113   114   115   116   117   118   119   120