Page 139 - Special Topic Session (STS) - Volume 2
P. 139
STS474 Hideatsu T.
copula. Alternatively, we can use the distance between the fitted copula
and empirical copula. For nested Archimedean copulas, Clayton or
Gumbel-Hougaard copulas are favorable candidate with tail
dependence.
(iii) Diagnostic analysis: We can carry out some goodness-of-fit test for
copula using resampling techniques (Fermanian, 2013). Some graphical
diagnostic method would be desirable.
We will present some results of (ongoing) empirical analysis of financial data.
4. Discussion
To incorporate heterogeneity, exogenous explanatory variables X with
regression coefficients vector β could be introduced in the model. One could
consider vine copulas as well although their interpretation is not easy.
References
1. L. Anselin, J. Le Gallo, and H. Jayet. Spatial panel econometrics. In L.
Mátyás and P. Sevestre, editors, The Econometrics of Panel Data, pages
625–660. SpringerVerlag, Berlin Heidelberg, 2008.
2. S. Demarta and A. J. McNeil. The t copula and related copulas.
International Statistical Review, 73:111–129, 2005.
3. J.-D. Fermanian. An overview of the goodness-of-fit test problem for
copulas. In P. Jaworski, F. Durante, and W. K. Härdle, editors, Copulae in
Mathematical and Quantitative Finance, pages 61–89. Springer-Verlag
Berlin Heidelberg, 2013.
4. C. Genest, K. Ghoudi, and L.-P. Rivest. A semiparametric estimation
procedure of dependence parameters in multivariate families of
distributions. Biometrika, 82: 543–552, 1995.
5. H. Joe. Multivariate Models and Dependence Concepts. Chapman and
Hall, London, 1997.
6. H. Joe. Dependence Modeling with Copulas. CRC Press, Boca Raton, 2015.
7. P. Krupskii, R. Huser, and M. G. Genton. Factor copula models for
replicated spatial data. Journal of the American Statistical Association,
113:467–479, 2018.
8. J. LaSage and R. K. Pace. Introduction to Spatial Econometrics. Chapman
& Hall/CRC, Boca Raton, 2009.
9. J. McNeil. Sampling nested archimedean copulas. Journal of Statistical
Computation and Simulation, 78:567–581, 2008.
10. R. B. Nelsen. An Introduction to Copulas. Springer-Verlag, New York,
second edition, 2006.
11. J. Segers and N. Uyttendaele. Nonparametric estimation of the tree
structure of a nested archimedean copula. Computational Statistics and
Data Analysis, 72: 190–204, 2014.
128 | I S I W S C 2 0 1 9