Page 139 - Special Topic Session (STS) - Volume 2
P. 139

STS474 Hideatsu T.
                   copula. Alternatively, we can use the distance between the fitted copula
                   and  empirical  copula.  For  nested  Archimedean  copulas,  Clayton  or
                   Gumbel-Hougaard  copulas  are  favorable  candidate  with  tail
                   dependence.
                (iii) Diagnostic analysis: We can  carry out some goodness-of-fit test for
                   copula using resampling techniques (Fermanian, 2013). Some graphical
                   diagnostic method would be desirable.

            We will present some results of (ongoing) empirical analysis of financial data.

            4.  Discussion
                To  incorporate  heterogeneity,  exogenous  explanatory  variables  X  with
            regression coefficients vector β could be introduced in the model. One could
            consider vine copulas as well although their interpretation is not easy.

            References
            1.  L.  Anselin,  J.  Le  Gallo,  and  H.  Jayet.  Spatial  panel  econometrics.  In  L.
                Mátyás and P. Sevestre, editors, The Econometrics of Panel Data, pages
                625–660. SpringerVerlag, Berlin Heidelberg, 2008.
            2.  S.  Demarta  and  A.  J.  McNeil.  The  t  copula  and  related  copulas.
                International Statistical Review, 73:111–129, 2005.
            3.  J.-D.  Fermanian.  An  overview  of  the  goodness-of-fit  test  problem  for
                copulas. In P. Jaworski, F. Durante, and W. K. Härdle, editors, Copulae in
                Mathematical  and  Quantitative  Finance,  pages  61–89.  Springer-Verlag
                Berlin Heidelberg, 2013.
            4.  C.  Genest,  K.  Ghoudi,  and  L.-P.  Rivest.  A  semiparametric  estimation
                procedure  of  dependence  parameters  in  multivariate  families  of
                distributions. Biometrika, 82: 543–552, 1995.
            5.  H. Joe. Multivariate Models and Dependence Concepts. Chapman and
                Hall, London, 1997.
            6.  H. Joe. Dependence Modeling with Copulas. CRC Press, Boca Raton, 2015.
            7.  P.  Krupskii,  R.  Huser,  and  M.  G.  Genton.  Factor  copula  models  for
                replicated spatial data. Journal of the American Statistical Association,
                113:467–479, 2018.
            8.  J. LaSage and R. K. Pace. Introduction to Spatial Econometrics. Chapman
                & Hall/CRC, Boca Raton, 2009.
            9.  J. McNeil. Sampling nested archimedean copulas. Journal of Statistical
                Computation and Simulation, 78:567–581, 2008.
            10. R.  B.  Nelsen.  An  Introduction  to  Copulas.  Springer-Verlag,  New  York,
                second edition, 2006.
            11. J.  Segers  and  N.  Uyttendaele.  Nonparametric  estimation  of  the  tree
                structure of a nested archimedean copula. Computational Statistics and
                Data Analysis, 72: 190–204, 2014.

                                                               128 | I S I   W S C   2 0 1 9
   134   135   136   137   138   139   140   141   142   143   144