Page 174 - Special Topic Session (STS) - Volume 4
P. 174

STS579 Elena Yarovaya
                  6.  Limnios, N. and Yarovaya, E. (2019). Diffusion approximation of near
                      critical branching processes in fixed and random environment. Stochastic
                      Models, 1–12, DOI: 10.1080/15326349.2019.1578240.
                  7.  Molchanov, S. and Yarovaya, E. (2012). Branching processes with lattice
                      spatial dynamics and a finite set of particle generation centers. Dokl.
                      Akad. Nauk, 446(3):259–262.
                  8.  Molchanov, S. and Yarovaya, E. (2013). Large deviations for a symmetric
                      branching random walk on a mul¬tidimensional lattice. Tr. Mat. Inst.
                      Steklova, 282 (Vetvyashchiesya Protsessy, Sluchainye Bluzhdaniya, i
                      Smezhnye Voprosy):195–211.
                  9.  Yarovaya, E. (2017a). Positive discrete spectrum of the evolutionary
                      operator of supercritical branching walks with heavy tails. Methodol.
                      Comput. Appl. Probab., 19(4):1151–1167.
                  10. Yarovaya, E. (2007). Branching random walks in a heterogeneous
                      environment. Center of Applied Inves-tigations of the Faculty of
                      Mechanics and Mathematics of the Moscow State University, Moscow. In
                      Russian.
                  11. Yarovaya, E. (2012). Spectral properties of evolutionary operators in
                      branching random walk models. Math. Notes, 92(1-2):115–131.
                      Translation of Mat. Zametki 92 (2012), no. 1, 123–140.
                  12. Yarovaya, E. (2013). Branching random walks with several sources. Math.
                      Popul. Stud., 20(1):14–26.
                  13. Yarovaya, E. (2015). The structure of the positive discrete spectrum of the
                      evolution operator arising in branching random walks. Doklady
                      Mathematics, 92(1):507–510.
                  14. Yarovaya, E. (2017b). Positive discrete spectrum of the evolutionary
                      operator of supercritical branching walks with heavy tails. Methodology
                      and Computing in Applied Probability, 19(4):1151–1167.
                  15. Yarovaya, E. (2017c). Spectral asymptotics of a supercritical branching
                      random walk. Teor. Veroyatn. Primen., 62(3):518–541.
                  16. Zel’dovich, Y., Molchanov, S., Ruzma˘ıkin, A., and Sokoloff, D. (1988).
                      Intermittency, diffusion and generation in a nonstationary random
                      medium. In Mathematical physics reviews, Vol. 7, volume 7 of Soviet Sci.
                      Rev. Sect. C Math. Phys. Rev., pages 3–110. Harwood Academic Publ.,
                      Chur.
















                                                                     163 | I S I   W S C   2 0 1 9
   169   170   171   172   173   174   175   176   177   178   179