Page 228 - Special Topic Session (STS) - Volume 4
P. 228
STS582 Júlia M. P. S.
7. Huang, S.; Chaudhary, K; Garmire, L.X. (2017). More is better: Recent
progress in Multi-Omics data integration methods. Frontiers in Genetics
8, Article 84: 1-12.
8. Irizarry, RA et al. (2003) Exploration, normalization, and summaries of
high density oligonucleotide array probe level data. Biostatistics 4: 249-
264.
9. Lê Cao, KA; González I; Déjean, S. (2009). IntegrOmics: an R package to
unravel relationships between two omics datasets. Bioinformatics 25:
2855-2856.
10. Leek, JT; Storey, JD. (2007) Capturing Heterogeneity in Gene Expression
Studies by Surrogate Variable Analysis. PloS Genetics 3 (9): e161.
11. Leek. JT et al. (2010). Tackling the widespread and critical impact of batch
effects in high-throughput data. Nat Rev Genet 11(10): 1-15.
12. Meinshausen, N; Bühlmann, P. et al. (2006). Highdimensional graphs and
variable selection with the lasso. The Annals of Statistics 34: 1436-1462.
13. Mitra, V et al. (2016). Identification of Analytical Factors Affecting
Complex Proteomics Profiles Acquired in a Factorial Design Study with
Analysis of Variance: Simultaneous Component Analysis. Analytical
Chemistry 88: 4229-4238.
14. Ni, Y. et al. (2018). Bayesian Hierarchical Varying-sparsity Regression
Models with Application to Cancer Proteogenomics. Journal of the
American Statistical Association 0(0): 1-13, Applications and Case Studies.
15. Oliveira, CM et al. (2008). Heritability of cardiovascular risk factors in a
Brazilian population: Baependi Heart Study. BMC Medical Genetics 32:1-
8.
16. Price AL, et al. (2006) Principal components analysis corrects for
stratification in genome-wide association studies. Nat Genet 38: 904-909.
17. Oualkacha, K. et al. (2012). Principal Components of Heritability for High
Dimension Quantitative Traits and General Pedigrees. Statistical
Applications in Genetics and Molecular Biology 11(2), Article 4:
18. Ray, B.; Liu, W.; Fenyö, D. (2017). Adaptive Multiview Nonnegative Matrix
Factorization Algorithm for Integration of Multimodal Biomedical Data.
Cancer Informatics 16: 1-12.
19. Ribeiro, A.H.; Soler, J.M.P. (2018). Learning Genetic and Environmental
Graphical Models from Family Data. In Annals of the XXIXth International
Biometric Conference, in Barcelona, Spain, July 8-13th, 2018. (article
submitted to Statistics in Medicine)
20. Rohart, F. et al. (2017). mixOmics: An R package for ‘omics feature
selection and multiple data integration. PLoS Comput Biol 13(11): 1-19.
21. Smilde, A.K. et al. (2005). ANOVA-simultaneous component analysis
(ASCA): a new tool for analyzing designed metabolomics data.
Bioinformatics 21(132005): 3043–48.
217 | I S I W S C 2 0 1 9