Page 152 - Contributed Paper Session (CPS) - Volume 3
P. 152

CPS1973 Matúš M. et al.
                  7.  Harchaoui, Z. and L´evy-Leduc, C. (2010), “Multiple Change-Point
                      Estimation With a Total Variation Penalty.” Journal of the American
                      Statistical Association, 105, No.492, 1480 – 1493.
                  8.  Hotv´ath, L. and Kokoszka, P. (2002), “Change-Point Detection With Non-
                      Parametric Regression.” Statistics 36, No.1, 9-31(23).
                  9.  Huˇskov´a, M. and Maciak, M. (2017), “Discontinuities in Robust
                      Nonparametric Regression with A-mixing Dependence.” Journal of
                      Nonparametric Statistics 29, No.2, 447-475.
                  10.  Jacob, L., Obozinski, G. and Vert, J.P. (2009), “Group Lasso with Overlap
                      and Graph Lasso.” Proceedings of he 26th International Conference on
                      Machine Learning (ICML 26), Montreal, Canada.
                  11.  Loader, C. (1996), “Change Point Estimation Using Nonparametric
                      Regression.” Annals of Statistics 24, 1667– 1678.
                  12.  Maciak, M. and Mizera, I. (2016), “Regularization Techniques in Joinpoint
                      Regression.” Statistical Papers, 1-17.
                  13.  Maciak, M. and Mizera, I. (2019), “Splines with Changepoints: Additive
                      Models for Functional Data.” (to be submitted).
                  14.  M¨uller, H. (1992), “Change Points in Nonparametric Regression
                      Analysis.” Annals of Statistics 20, 737 – 715.
                  15.  Qiu, P. and Yandell, B. (1998), “A Local Polynomial Jump Detection
                      Algorithm in Nonparametric Regression.” Technometrics 40, 141 – 152.
                  16.  Sadhanala, V. and Tibshirani, R. (2018), “Additive Models with Trend
                      Filtering.” arXiv:1702.05037, 1–63.
                  17.  Tibshirani, R. (2014), “Adaptive Piece-wise Polynomial Estimation via
                      Trend Filtering.” The Annals of Statistics, 42(1), 285–323.





























                                                                     141 | I S I   W S C   2 0 1 9
   147   148   149   150   151   152   153   154   155   156   157