Page 229 - Contributed Paper Session (CPS) - Volume 3
P. 229

CPS2002 Atina A. et al.
                In  this  paper,  we  use  Gaussian copula,  Student  t -copula,  Archimedean
            copula (Clayton, Gumbel, and Frank), and Farlie-Gumbel-Morgenstern (FGM)
            copula. Each of the copula is defined as follow
            a.  Gaussian Copula
                Gaussian copula is derived from bivariate normal distribution, is defined
                by

                                 −1
                                      −1
                                    )
                                 ( u  ( v)  1        y − 2 yz +  z 
                                                                    
                                                         2
                                                                  2
                            v =
                                                      −
                            ,
                    C Gauss ( u )                           2     dydz         (3)
                                                     
                                                                    
                                 −   −   2  1 (  −  2 )    1 ( 2  −   )  
                where    is the correlation function and   ( 1 . Gaussian copula does
                                                            −
                                                        
                                                               ) 1 ,
                not have a tail dependence, therefore  L  =  U  = 0.

            b.  Student  t -Copula
                Student  t -copula is related with the bivariate student  t  distribution. The
                copula is defined by

                                                                      +2
                               t  −1 ( u t )   −1 ( v)    y − 2 yz +  z 
                                                                  2
                                                         2
                                                                     2
                                                     +
                            v =
                           ,
                 C Student  t −  ( u )     1       1        2        dydz      (4)
                                                    
                                                                    
                                 −   −   2  1 (  −  2  )    1 (   −   )  

                Similar with Gaussian copula, the range of the parameter    is  (−  ) 1 , 1 . While
                for the tail dependence, student  t -copula has symmetric lower and upper
                                                       (  1  1 + )  
                                                          + )(
                tail  dependence,  i.e.   L  =  U  = 2T  +1   −     ,  where  T   1 +   is  the
                                                          1 +    
                cumulative distribution function of student  t  distribution with degree of
                         
                freedom  +  1.

            c.  Archimedean Copula
                Archimedean copula used in this paper consists of Clayton, Gumbel, and
                Frank copula defined by
                                                      1
                                                     −
                                                            ( +
                            C Clayton (u ,  ) v  = (u − + v −  − ) 1   ,   , 0  )  (5)
                                                          1  
                                                            
                                       
                                                
                                          (−
                       C Gumbel (u ,v ) = exp  −   ln u ) + (− ln  ) v        , 1 [ + )   (6)
                                                             ,
                                                          
                                                           
                                                            
                                       
                                 1     (e − u  − 1 )(e − v  −  ) 1  
                   C Frank (u ,v ) = −  ln    1+  (e − −  ) 1     ,   (−  ) 0 ,   , 0 ( + )    (7)
                                                               218 | I S I   W S C   2 0 1 9
   224   225   226   227   228   229   230   231   232   233   234