Page 233 - Contributed Paper Session (CPS) - Volume 3
P. 233

CPS2002 Atina A. et al.





















                             Figure 2. Distribution Fitting for Both Variables

                            Table 3. Estimated Parameters of Copula Models
                           ˆ
                                                       L
               Copula             df         ˆ       ˆ        ˆ U     AIC      BIC
              Gaussian   0.846589   0     0.642696     0         0     -70.9426   -68.9172
                     *
              Student- t   0.849506  17.61235   0.6462   0.233783   0.233783  -69.4323   -65.3816
               Clayton   2.276665   0     0.532346  0.7375235    0     -65.3608   -63.3355
               Gumbel   2.51256     0      0.602       0      0.68232   -60.4348   -58.4095
                Frank   9.406259    0     0.649079     0         0     -70.415   -68.3897
                FGM       1         0     0.22222      0         0     -10.8329   -8.80753
            * selected copula

                Table 3 shows the estimated parameter of each copula along with the AIC
            and BIC value. From the table, we can see that Gaussian copula is the best
            copula  function  to  model  rice  production  and  temperature  change  data
            because it has the smallest AIC and BIC values. By applying the procedure in
            the previous section, the estimation of yield-based agricultural losses can be
            done. The result is presented in Fig. 3.





















                         Figure 3. Yield-Based Agricultural Losses Estimation

                                                               222 | I S I   W S C   2 0 1 9
   228   229   230   231   232   233   234   235   236   237   238