Page 126 - Contributed Paper Session (CPS) - Volume 5
P. 126

CPS1141 Mahdi Roozbeh






                      The SPGRRE has the disadvantage that it has strange behavior for small
                                                                −1
                  values of £n. Also, the shrinkage factor (1 − £ ) becomes negative for £n <
                                                                
                  d.  Hence,  we  consider  the  positive-rule  Stein-type  partially  generalized
                  restricted ridge estimator (PRSPGRRE) defined by





                  References
                  1.  Akden¨ız, F. and Tabakan, G. (2009). Restricted ridge estimators of the
                      parameters in semiparametric regression model. Comm. Statist. Theo.
                      Meth., 38, 1852-1869.
                  2.  Amini, M. and Roozbeh, M. (2015). Optimal partial ridge estimation in
                      restricted semiparametric regression models. J. Mult. Anal., 136, 26-40.
                  3.  Arashi, M., (2012). Preliminary test and Stein estimators in simultaneous
                      linear equations. Linear Algebra and its Applications, 436(5), 1195-1211.
                  4.  Arashi, M., Kibria, B.M.G., Norouzirad, M. and Nadarajah, S. (2014).
                      Improved Preliminary test and Stein-Rule Liu Estimators for the Ill-
                      Conditioned Elliptical Linear Regression Model. J. Mul. Anal.,124, 53-74.
                  5.  Arashi, M. and Tabatabaey, S.M.M. (2009). Improved variance estimation
                      under sub-space restriction. J.Mul. Anal., 100, 1752-1760.
                  6.  Buhlmann, ¨ P. and van de Geer, S. (2011). Statistics for High-
                      dimensional Data: Methods, Theory and Applications. Springer,
                      Heidelberg.
                  7.  Fallahpour, S., Ahmed, S.E. and Doksum, K.A. (2012). L1 penalty and
                      shrinkage estimation in partially linear models with random coefficient
                      autoregressive errors. Appl. Stochastic Mod. Bus. Ind., 28,236-250.
                  8.  Fan, J. and Lv, J. (2010). A selective overview of variable selection in high
                      dimensional feature space.Statist. Sinica, 20, 101-148.
                  9.  Hoerl, A.E. and Kennard, R.W. (1970). Ridge regression: biased estimation
                      for non-orthogonal problems.Technometrics, 12, 55-67.
                  10.  Roozbeh, M. (2015). Shrinkage ridge estimators in semiparametric
                      regression models. J. Mult. Anal., 136,56-74.
                  11.  Roozbeh, M. and Arashi, M. (2013). Feasible ridge estimator in partially
                      linear models. J. Mult. Anal.,116, 35-44.
                  12.  Shao, J. and Deng, X. (2012). Estimation in high-dimensional linear
                      models with deterministic design matrices. Ann. Statist., 40, 812-831.
                  13.  Speckman, P. (1988). Kernel somoothing in partial linear models. J. Roy.
                      Statist. Soc., Ser B., 50, 413-4


                                                                     115 | I S I   W S C   2 0 1 9
   121   122   123   124   125   126   127   128   129   130   131