Page 100 - Contributed Paper Session (CPS) - Volume 8
P. 100
CPS2204 T. von R. et al.
The ̂ is a diagnostic measure for assessing the simultaneous
,
̂
influence of several observations on the parameter estimates, . Since all
parameters in the model are estimated from the perturbed model, ̂ is
,
regarded to be a joint-parameter influence measure. It can be of interest to
assess the influence of multiple observations on a particular parameter
̂
estimate, , in model (1). If this is the case, we use the same methodology as
above and obtain a marginal-parameter influence measure.
̂
̂
̂
Let = ( , )be a vector of parameter estimates, where
1
̂
̂
̂
= ( , . . . , ̂ −1 , ̂ +1 , … , ),
1
1
are the maximum likelihood estimates from the unperturbed model (1), and
̂
is estimated from the perturbed model (11).
References
1. R.D. Cook, Assessment of local inuence, J. R. Stat. S. Ser. B 48 (1986), pp.
133{169.
2. D.A. Belsley, E. Kuh, and R.E. Welsch, (1980), Regression Diagnostics:
Identifying Inuential Data and Sources of Collinearity, New York: John
Wiley.
3. N. Billor and R.M. Loynes Local inuence: A new approach, Comm. Statist-
Theory Meth. 22 (1993), pp. 1595{1611.
4. R.D. Cook Detection of inuential observations in linear regression,
Technometrics 19 (1977), pp. 15{18. R.D. Cook Inuential observations in
linear regression, J. Amer. Statist. Assoc. 74 (1979), pp. 169{174.
5. R.D. Cook and S. Weisberg (1982). Residuals and Inuence in Regression.
New York: Chapman and Hall.
6. B. Efron and R.J. Tibshirani (1993). An Introduction to Bootstrap. New
York: Chapman and Hall.
7. FUNG, W. K. (1993). Unmasking outliers and leverage points: a
con_rmation. Jour. Amer. Statist. Assoc. 88, 515-519. A.S. Hadi and J.S.
Simonoff Procedures for the identi_cation of multiple outliers in linear
models, Jour. Amer. Statist. Assoc 88 (1993), pp. 1264{1272.
8. A.J. Lawrance Regression transformation diagnostic using local inuence,
Jour. Amer. Statist. Assoc. 83 (1990), pp. 1067{1072.
9. P. Prescott An approximation test for outliers in linear models,
Technometrics 17 (1975), 129{132.
10. S. Weisberg (1985). Applied Linear Regression. 2nd. Ed. New York: Wiley
89 | I S I W S C 2 0 1 9