Page 132 - Contributed Paper Session (CPS) - Volume 6
P. 132

CPS1848 J.A. Roldán-Nofuentes et al.
                                                                                     ˆ
                                                                               ˆ
                                                                         ˆ
                                                                     ˆ
                                                                                   
                  and  the  estimators  of  their  variances  are  Var Se     Se 1  1 Se 1  n ,
                                                                                          1
                                                                          1
                       ˆ
                                                              ˆ
                                                                    ˆ
                   ˆ
                                                                           ˆ
                                                          ˆ
                             ˆ
                                    ˆ
                        
                                                                         
                                  
                                                               
                  Var Se 2   Se 2  1 Se 2  n 1  ,      Var Sp 1   Sp 1  1 Sp 1  n 2   and
                             ˆ
                   ˆ
                       ˆ
                        
                  Var Sp 2   Sp 2  1 Sp  ˆ  2  n . Therefore, the sensitivities and the specificities are
                                         2
                  estimated as proportions of marginal totals. In this way, in the case sample we
                  are interested in the marginal frequencies  n   and  n , as these frequencies
                                                             11       1 1
                  are the product of a type I bivariate binomial distribution (Kocherlakota and
                  Kocherlakota, 1992). In an analogous way, the marginal frequencies  n   and
                                                                                      20
                  n 2 0   of  the  control  sample  are  the  product  of  a  type  I  bivariate  binomial
                  distribution. In the case of individuals with the disease, the type I bivariate
                  binomial distribution is characterized (Kocherlakota and Kocherlakota, 1992)
                                                                                           
                  by the two sensitivities ( Se  and  Se ) and by the correlation coefficient (  )
                                            1        2
                  between  T  and  T . In an analogous way, in the case of individuals who do
                             1      2
                  not have the disease the type I bivariate binomial distribution is characterized
                                                                
                  by  Sp ,  Sp  and the correlation coefficient (  ) between  T  and T . In the
                        1     2                                              1       2
                  case  of  the  individuals  with  the  disease  (cases),  the  correlation  coefficient
                  between the two BDTs is
                                 Se Se                   
                           111   1  2                   1          ,
                                  
                                                           
                                                                 
                                                       
                                        
                              
                         Se 1 1 Se Se 2 1 Se 2   Se 1 1 Se Se 2 1 Se 2 
                                 1
                                                          1
                  and in the case of the individuals who do not have the disease (controls), the
                  correlation coefficient between the two BDTs is
                                 Sp Sp                  
                           200   1  2                   0          ,
                                  
                                                           
                                                                 
                                                       
                              
                                        
                         Sp 1 1 Sp Sp 2 1 Sp 2   Sp 1 1 Sp Sp 2 1 Sp 2 
                                                          1
                                 1
                  with
                                       n n    n n            n n    n n
                                    ˆ   1 111  11  1 1    and     ˆ     2  200  20  2 0  ,
                                    1         2            0         2
                                            n                      n
                                             1                      2
                                                          ˆ ˆ
                                           ˆ
                                              ˆ
                                      ˆ
                                      Cov  Se Se     ˆ    Se Se 2  n    ˆ n
                                             ,
                                            1
                                                                        1
                                                           1
                                                                      1
                                                                  1
                                                   111
                                                2
                  and
                                                    ˆ
                                          ˆ
                                                         ˆ ˆ
                                     ˆ
                                             ˆ
                                                 
                                                    
                                            ,
                                     Cov  Sp Sp 2    200  Sp Sp 2  n    ˆ n .
                                                                      0
                                                                         2
                                           1
                                                           1
                                                                  2
                  All of the other covariances are zero, since the two samples are independent.
                                             
                                     
                  The estimators of    and    are
                              n n  n n                          n n   n n
                    
                                                       
                   ˆ        1 111  11  1 1     and  ˆ         2 200  20  2 0     .
                         n 11  n   1  n 11  n 1 1 n   1  n 1 1   n 20  n   2  n 20  n 2 0 n   2  n 2 0 
                  Assuming  that  there  is  an  estimation  p  of  the  disease  prevalence,  the
                  estimators of the predictive values are
                                                                     121 | I S I   W S C   2 0 1 9
   127   128   129   130   131   132   133   134   135   136   137