Page 146 - Invited Paper Session (IPS) - Volume 2
P. 146

IPS192 Hukum C. et al.
                      small area estimation technique. Journal of Applied Statistics 38(11),
                      2413-2432.
                  4.  Eilers, P. H. C. and B. D. Marx, 1996. Flexible smoothing with B-splines
                      and penalties. Statistical Science 11 (2), 89–121.
                  5.  Fay, R. E. and Herriot, R. A., 1979. Estimation of income from small
                      places: an application of James-Stein procedures to census data. Journal
                      of the American Statistical Association 74, 269277.
                  6.  Green, P.J. and Silverman, B.W., 1994. Nonparametric Regression and
                      Generalized Linear Models: A Roughness Penalty Approach. Chapman &
                      Hall Ltd.
                  7.  Manteiga, G.W., Lombardìa, M.J., Molina, I., Morales, D., and
                      Santamarìa,L., 2007. Estimation of the mean squared error of predictors
                      of small area linear parameters under a logistic mixed model.
                      Computational Statistics and Data Analysis 51, 2720-2733.
                  8.  Opsomer, J.D., Claeskens, G., Ranalli, M.G., Kauermann, G. and Breidt, F.J.,
                      2008. Nonparametric small area estimation using penalized spline
                      regression. Journal of the Royal Statistical Society B 70, 265-286.
                  9.  Pratesi, M., Ranalli, M.G., Salvati, N., 2009. Nonparametric M-quantile
                      regression using penalised splines. Journal of Nonparametric Statistics
                      21, 287-304.
                  10.  Ruppert D., Wand M.P., Carroll R.J., 2003. Semiparametric Regression.
                      Cambridge University Press, New York.





























                                                                     133 | I S I   W S C   2 0 1 9
   141   142   143   144   145   146   147   148   149   150   151