Page 386 - Special Topic Session (STS) - Volume 2
P. 386

STS506 L. Leticia R. et al.
                  evolution. With this in mind, we propose using RNN that can be trained on
                  simulated  outbreaks  with  a  variety  of  networks  of  contacts  and  epidemic
                  parameters. Once trained, the predictions are very efficient to obtain.
                     The motivation of the use of surrogate models is clear and the results are
                  promising, however it is extremely important to study the error that arise from
                  their introduction, in order to control it to our needs.

                  References
                  1.  Biggerstaff, M., Cauchemez, S., Reed, C., Gambhir, M., and Finelli, L.
                      (2014). Estimates of the reproduction number for seasonal, pandemic,
                      and zoonotic influenza: a systematic review of the literature. BMC
                      infectious diseases, 14(1): 480.
                  2.  Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,
                      Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using
                      RNN encoder-decoder for statistical machine translation. arXiv preprint
                      arXiv:1406.1078.
                  3.  Cori, A., Valleron, A., Carrat, F., Tomba, G. S., Thomas, G., and Boëlle, P.
                      (2012). Estimating influenza latency and infectious period durations
                      using viral excretion data. Epidemics, 4(3):132–138.
                  4.  da Silva, I. N., Spatti, D. H., Flauzino, R. A., Liboni, L. H. B., and dos Reis
                      Alves, S. F. (2017). Artificial Neural Networks: A Practical Course.
                      Springer.
                  5.  Del Moral P, Doucet A, Jasra A (2012) An adaptive sequential monte
                      carlo method for approximate bayesian computation. Statistics and
                      Computing 22(5):1009–1020.
                  6.  Dutta R, Mira A, Onnela JP (2018) Bayesian inference of spreading
                      processes on networks. Proceedings of the Royal Society A:
                      Mathematical, Physical and Engineering Sciences 474(2215):20180,129
                  7.  Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet
                      classification with deep convolutional neural networks. In Advances in
                      neural information processing systems (NIPS’2012), pp 1097-1105.
                  8.  Marin, J.-M., Pudlo, P., Robert, C. P., y Ryder, R. J. (2012) Approximate
                      Bayesian computational methods. Statistics and Computing, 22(6):1167–
                      1180, 2012.
                  9.  Marjoram, P., Molitor, J., Plagnol, V., & Tavaré, S. (2003). Markov chain
                      Monte Carlo without likelihoods. Proceedings of the National Academy
                      of Sciences, 100(26), 15324-15328.
                  10.  Newman, M. E. (2002). Spread of epidemic disease on networks. Physical
                      review E, 66(1), 016128.
                  11.  Ramírez-Ramírez L.L., Gel Y.R., Thompson M, de Villa E., McPherson M.
                      (2013) A new surveillance and spatio-temporal visualization tool SIMID:



                                                                     375 | I S I   W S C   2 0 1 9
   381   382   383   384   385   386   387   388   389   390   391