Page 165 - Special Topic Session (STS) - Volume 4
P. 165

STS577 Md. Sabiruzzaman et al.
                       Table 1: Forecast errors of Wavelet-GARCH and GARCH forecasts
                                                RMSE                    DTW distance
                 Standard GARCH Forecast       0.008667                   0.1528
                                          Wavelet-GARCH Simulation
              Wavelet   Error
               basis   Dist.   N      100      500      1000     100     500     1000
                             mean   0.008058   0.008043   0.008015   0.1390   0.1364   0.1367
                      Normal
                              sd     0.00232   0.00219   0.00227   0.06168   0.05819   0.05845
                             mean   0.007886   0.007874   0.007887   0.133332   0.13484   0.13522
               Haar    GED
                              sd     0.00236   0.00242   0.00244   0.06222   0.06091   0.06116
                             mean   0.006251   0.005824   0.005840   0.11593   0.1064   0.10490
                        t
                              sd     0.00278   0.00271   0.00263   0.0593   0.0581   0.0564
                      Norma  mean   0.005862   0.005786   0.005716   0.09600   0.09589   0.09469
                        l     sd    0.002445   0.002343   0.002368   0.05486   0.05301   0.05301
               Sym8          mean   0.005691   0.00535   0.005639   0.09715   0.09044   0.09301
                       GED    sd     0.00250   0.00239   0.00233   0.0555   0.0494   0.05055
                             mean   0.003734   0.00410   0.004138   0.07015   0.074415   0.07458
                        t
                              sd    0.002431   0.00237   0.00234   0.03997   0.04528   0.04524

            4.  Conclusion
                This  study  proposed  a  new  algorithm  for  volatility  prediction  by
            incorporating  multi-scale  information.  It  is  demonstrated  that,  the  wavelet
            decomposition can be used to obtain the volatility change at different time
            scale for different level of investor. From the simulation study, it is evident that
            inclusion of time scale variation can improve the volatility prediction. Use of
            wavelet  transformation  in  analyzing  financial  time  series  is  now  a  day
            frequently  practiced  by  academicians  and  business  analysts.  However,
            integration  of  wavelet  transformation  with  GARCH  modeling  is  yet  rarely
            found. Application of this new approach to a wide range of time series data
            would carry out its credibility and pitfall as well.

            References
            1.  Al Wadi, S., Hamarsheh, A., & Alwadi, H. (2013). Maximum overlapping
                discrete      wavelet transform in forecasting banking sector. Applied
                Mathematical Sciences, 7(80), 3995-4002.

            2.  Alves, D. K., Neto, C. M. S., Costa, F. B., & Ribeiro, R. L. A. (2014,
                December). Power measurement using the maximal overlap discrete
                wavelet transform. In Industry Applications (INDUSCON), 2014 11th
                IEEE/IAS International Conference on (pp. 1-7). IEEE.
            3.  Gallegati, M., Ramsey, J. B., & Semmler, W. (2014). Interest rate spreads
                and output: A time scale decomposition analysis using wavelets.
                Computational Statistics & Data Analysis, 76, 283-290.
            4.  Reboredo, J. C., & Rivera-Castro, M. A. (2014). Wavelet-based evidence of
                the impact of oil prices on stock returns. International Review of
                Economics & Finance, 29, 145-176.


                                                               154 | I S I   W S C   2 0 1 9
   160   161   162   163   164   165   166   167   168   169   170