Page 160 - Special Topic Session (STS) - Volume 4
P. 160
STS577 Mahdi Roozbeh
Figure 1: The diagram of GCV versus k and d for real data set
References
1. Amini, M. and Roozbeh, M. (2015). Optimal partial ridge estimation in
restricted semipara-metric regression models. Journal of Multivariate
Analysis, 136, 26-40.
2. Arashi M, Janfada M, Norouzirad M. (2015). Singular ridge regression
with stochastic con- straints, Comm. Statist. Theo. Meth., 44, 1281-1292.
3. Arashi M, Valizadeh T. (2015). Performance of Kibria’s methods in partial
linear ridge regression model. Stat. Pap., 56, 231-246.
4. Golub, G., Heath, M. and Wahba, G. (1979). Generalized cross
validationas a method for choosing a good ridge parameter.
Technometrics 21, 215-223.
5. Hassanzadeh Bashtian, M., Arashi, M. and Tabatabaey, S. M. M. (2011).
Using improved estimation strategies to combat multicollinearity. J.
Statist. Comp. Sim., 81, 1773-1797.
6. Hettmansperger, T. P. and McKean, J. W. (1998). Robust Nonparametric
Statistical Methods, London: Arnold.
7. Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: biased
estimation for non-orthogonal problems, Thechnometrics, 12, 69-82.
8. Roozbeh, M. (2016). Robust ridge estimator in restricted semiparametric
regression models. J. Mul. Anal., 147, 127-144.
9. Speckman, P. (1988). Kernel somoothing in partial linear models. Journal
of the Royal Statis- tical Society, Series B, 50, 413-436.
149 | I S I W S C 2 0 1 9