Page 364 - Contributed Paper Session (CPS) - Volume 2
P. 364

CPS1887 Sahidan A. et al.
                  5.  Liu, Y., Hiyama, T. and Yamaguchi, Y. 2006. Scaling of land surface
                      temperature using satellite data: A case examination on ASTER and
                      MODIS products over a heterogeneous terrain area. Remote Sensing of
                      Environment, 105, 115–128.
                  6.  Mao, F., Li, X., Du, H., Zhou, G., Han, N., Xu, X., Liu, Y., Chen, L. and Cui, L.
                      2017. Comparison of two data assimilation methods for improving
                      MODIS LAI time series for bamboo forests. Remote Sensing, 9(5), 401.
                  7.  Neteler, M. 2010. Estimating daily land surface temperatures in
                      mountainous environments by reconstructed MODIS LST Data. Remote
                      Sensing, 2, 333–351.
                  8.  Prata, A.J., Caselles, V., Coll, C., Sobrino, J.A. and Ottlé, C. 1995. Thermal
                      remote sensing of land surface temperature from satellites: Current
                      status and future prospects. Remote Sensing Reviews, 12, 175–224.
                  9.  Przyborski, P. 2018, Land surface temperature. Available online:
                      https://earthobservatory.nasa.gov/global-maps/MOD11C1_M_LSTDA
                  10.  Ro-Ting, L. and Chang-Chuan, C. 2009. Effects of heat on workers' health
                      and productivity in Taiwan. Global Health Action, 2, 10.3402. Available
                      online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2799321
                  11.  Smith, R.E., Price, J.M., Howser, L.M. 1994. A Smoothing Algorithm Using
                      Cubic Spline Functions; Technical Note: NASA TN D-7397; National
                      Aeronautics and Space Administration (NASA):Washington, DC, USA.
                  12.   Tan, C.H. 2007. Effects of temperature variation induced and economic
                         assessment from paddy cultivation, (in Chinese). Presented at
                      Agricultural
                         Engineering Research Center, Chungli, Taiwan.
                  13.  Townshend, J.R.G., Justice, C.O., Skole, D., Malingreau, J.P., Cihlar, J.,
                      Teillet,
                         P. 1994. The 1 km resolution global data set: Needs of the International
                         Geosphere Biosphere Programme. International Journal of Remote
                         Sensing, 15, 3417–3441.
                  14.  Wahba, G. 1990. Spline Models for Observational Data; CBMS-NSF
                      Regional Conference Series in Applied Mathematics; Society for
                      Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA., pp.
                      1–20.
                  15.  Wold, S. 1974. Spline function in data analysis. Technometrics, 16, 1–11.
                  16.  Wongsai, N., Wongsai, S. and Huete, A.R. 2017. Annual seasonality
                      extraction using the cubic spline function and decadal trend in temporal
                      daytime MODIS LST data. Remote sensing, 9, 1254.
                  17.  Zhang, H., Pu, R. and Liu, X. 2016. A New image processing procedure
                      integrating PCI-RPC and ArcGIS-Spline tools to improve the
                      orthorectification accuracy of high-resolution satellite imagery. Remote
                      Sensing, 8, 827.

                                                                     353 | I S I   W S C   2 0 1 9
   359   360   361   362   363   364   365   366   367   368   369