Page 41 - Contributed Paper Session (CPS) - Volume 2
P. 41

CPS1414 Bashiru. I.I S. at el.
            variables to vary locally.  Prior to the GWLM modelling, a GLM which
            assumes fixed parameter was first specified. A Moran I test was then
            used  to  determine  the  presence  of  spatial  autocorrelation  in  the
            residuals of the model.

             2.3 Moran’s I test for spatial autocorrelation

                                            n
                                    n         n  w ij  x (  i  − x)( x  j  − x)
                         Moran’s I  =       = i 1  = j 1                                    (6)
                                  SumW            n = i 1  x (  i  − x) 2


            where n  is the number of cases indexed by i  and  j ,  x  is the variable
            of interest,  x  is the mean of  x ' ,  w  is the weight between cases i
                                              s
                                            i     ij
            and  j , and  SumW is the sum of all  w '
                                                      s
                                                    ij
                                              n
                                           n
                                            SumW  =  w                                                   (7)
                                                 ij
                                           = i 1  = j 1

            3.  Results and Discussions

                      Table 2: parameter estimates of the conventional model (GLM)
                           Parameter    Estimate   Std.   t-value   P-value
                                                 error
                           Intercept    -0.2069   0.1784   -1.1600   0.2479
                           Schild       0.0017   0.0009   1.8690   0.0634
                                                                        *
                           Aged                                    0.0228*
                                        0.0026   0.0011   2.2980     *
                           log(Const)                              0.0259*
                                        -0.0230   0.0102   -2.2490   *
                           log(Agric)                              0.0335*
                                        0.0416   0.0194   2.1440     *
                           HSabove
                                        -0.0002   0.0008   -0.2090   0.8348
                           Unemployed   -0.0015   0.0012   -1.2440   0.2152
                           Poor         0.0006   0.0005   1.1440   0.2545
                           log(Bschool)   -0.0144   0.0292   -0.4930   0.6227
                           Mining       0.0000   0.0000   0.3610   0.7188
                           R             0.25
                            2
                           Adj. R 2

                                         0.21
                           AICc         -321.26
                           Moran’s I
                           Test          0.001
                p≤ 0.001 ***, p≤ 0.05 **, p≤ 0.010*

                                                                30 | I S I   W S C   2 0 1 9
   36   37   38   39   40   41   42   43   44   45   46