Page 48 - Contributed Paper Session (CPS) - Volume 2
P. 48

CPS1416 Jungtaek O. et al.
                  Finally,  these  five  estimators  are  compared  using  the  comparison  statistics
                  which are Bias, Absolute bias and Root mean squared error(RMSE) defined by

                                                                    1
                                                                2
                       1      ()   ()        1       ()  ()  2
                             ̂
                                                       ̂
                  Bias: ∑ (Y ̅   − Y ̅  ) , RMSE:  { ∑ (Y ̅  − Y ̅  ) }
                                               
                         =1                      =1
                   Where  the  number  of  iteration,  R  is  5,000.  For  reducing  the  specific
                  population effect, we generate population data with different seed for each
                                                      ( )
                  iteration. Therefore the notation of    is used for th population mean.
                                                      
                  4.2 Simulation result

                      First,  the  estimates  of  (1,2)  are  summarized  to  examine  whether  the
                  parameters are estimated properly under the assumption of each distribution.
                  Then  the  estimates,  (̂ , ̂ ) and  (̂ , ̂ ) are  summarized  to  examine  the
                                                         ∗
                                                      ∗
                                         1
                                            2
                                                         2
                                                      1
                  properties  of  parameters  of  the  generalized  ratio-type  estimator.  And  the
                  simulation results are summarized according to the distributions of error that
                  are normal distribution and t5 distribution.
                  Table 1. Parameter estimation for normal dist.
                        ( ,  )  ( ,  )              Estimates
                                   1
                                      2
                             2
                          1
                     0
                                             (̂ , ̂ )     (̂ , ̂ )      (̂ , ̂ )
                                                                                  ∗
                                                                                     ∗
                                               1
                                                                                     2
                                                                                  1
                                                                1
                                                  2
                                                                   2
                         (20,5)   (0,0.5)   0.0004   0.4836  0.7803  0.2197   0.7803  0.2197
                                 (0.5,1)   0.4913   0.9835  0.7803  0.2194   0.7804  0.2196
                   0             (1,1.3)   0.9937   1.2666  0.7795  0.2217   0.7798  0.2210
                                 (1,1.5)   1.0060   1.4232  0.7751  0.2334   0.7767  0.2276
                         (20,5)   (0,0.5)   0.0009   0.4838  0.3950  0.1111   0.3950  0.1112
                                 (0.5,1)   0.4888   0.9798  0.3951  0.1110   0.3951  0.1110
                                 (1,1.3)   0.9879   1.2815  0.3945  0.1116   0.3947  0.1115
                   200           (1,1.5)   0.9870   1.4775  0.3951  0.1117   0.3948  0.1112
                         (20,-7)   (0.5,1)   0.4912   0.9796  0.5386  -0.2115   0.5387  -0.2117
                                 (1,1.3)   0.9864   1.2552  0.5371  -0.2021   0.5375  -0.2074
                                 (1,1.5)   0.9897   1.4202  0.5344  -0.1856   0.5357  -0.2004











                                                                      37 | I S I   W S C   2 0 1 9
   43   44   45   46   47   48   49   50   51   52   53