Page 99 - Contributed Paper Session (CPS) - Volume 3
P. 99
CPS1952 Michele N. et al.
differential equation approach’, Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 73(4), 423-498.
6. Mabaso, M. L. H., Craig, M., Vounatsou, P. & Smith, T. (2005), ‘Towards
empirical description of malaria seasonality in southern Africa: the
example of Zimbabwe’, Tropical Medicine & International Health 10(9),
909-918.
7. Martinez, M. E. (2018), ‘The calendar of epidemics: seasonal cycles of
infectious diseases’, PLoS Pathogens 14(11), e1007327.
8. Pewsey, A., Neuhäuser, M. & Ruxton, G.D. (2013), Circular Statistics in R,
Oxford University Press.
9. Stuckey, E. M., Smith, T. & Chitnis, N. (2014), ‘Seasonally dependent
relationships between indicators of malaria transmission and disease
provided by mathematical model simulations’, PLoS Computational
Biology 10(9), e1003812.
10. Valle, D. & Lima, J. M. T. (2014), ‘Large-scale drivers of malaria and priority
areas for prevention and control in the Brazilian Amazon region using a
novel multi-pathogen geospatial model’, Malaria Journal 13(1), 443.
11. World Health Organization (2018), World Malaria Report 2018, Geneva.
88 | I S I W S C 2 0 1 9