Page 162 - Contributed Paper Session (CPS) - Volume 4
P. 162

CPS2164 Jonathan Hosking et al.
                  11.  Nagakura, D. (2013). Exact gradient vector of loglikelihood for linear
                      Gaussian state space models. Available at
                      http://dx.doi.org/10.2139/ssrn.1634552.
                  12.  Petris, G., Petrone, S., and Campagnoli, P. (2009). Dynamic Linear Models
                      with R. Springer, New York.
                  13.  Segal, M., and Weinstein, E. (1988). A new method for evaluating the log-
                      likelihood gradient (score) of linear dynamic systems. IEEE Trans. Auto.
                      Control 33, 763–766.
                  14.  Segal, M., and Weinstein, E. (1989). A new method for evaluating the log-
                      likelihood gradient, the Hessian, and the Fisher information matrix for
                      linear dynamic systems. IEEE Trans. Info. Theory 35, 682–687.
                  15.  West, M., and Harrison, P. J. (1997). Bayesian Forecasting and Dynamic
                      Models, 2nd ed. Springer, New York.
                  16.  Wikipedia contributors (2018). Broyden-Fletcher-Goldfarb-Shanno
                      algorithm.
                      https://en.wikipedia.org/wiki/Broyden%E2%80%93Fletcher%E2%80%93G
                      oldfarb%E2%80%93Shanno algorithm.
                  17.  Zadrozny, P. A. (1989). Analytic derivatives for estimation of linear
                      dynamic models. Comput. Math. Appl., 18, 539–553.










































                                                                     151 | I S I   W S C   2 0 1 9
   157   158   159   160   161   162   163   164   165   166   167