Page 162 - Contributed Paper Session (CPS) - Volume 4
P. 162
CPS2164 Jonathan Hosking et al.
11. Nagakura, D. (2013). Exact gradient vector of loglikelihood for linear
Gaussian state space models. Available at
http://dx.doi.org/10.2139/ssrn.1634552.
12. Petris, G., Petrone, S., and Campagnoli, P. (2009). Dynamic Linear Models
with R. Springer, New York.
13. Segal, M., and Weinstein, E. (1988). A new method for evaluating the log-
likelihood gradient (score) of linear dynamic systems. IEEE Trans. Auto.
Control 33, 763–766.
14. Segal, M., and Weinstein, E. (1989). A new method for evaluating the log-
likelihood gradient, the Hessian, and the Fisher information matrix for
linear dynamic systems. IEEE Trans. Info. Theory 35, 682–687.
15. West, M., and Harrison, P. J. (1997). Bayesian Forecasting and Dynamic
Models, 2nd ed. Springer, New York.
16. Wikipedia contributors (2018). Broyden-Fletcher-Goldfarb-Shanno
algorithm.
https://en.wikipedia.org/wiki/Broyden%E2%80%93Fletcher%E2%80%93G
oldfarb%E2%80%93Shanno algorithm.
17. Zadrozny, P. A. (1989). Analytic derivatives for estimation of linear
dynamic models. Comput. Math. Appl., 18, 539–553.
151 | I S I W S C 2 0 1 9