Page 161 - Contributed Paper Session (CPS) - Volume 4
P. 161

CPS2164 Jonathan Hosking et al.
            Table 1. Computation times for the models discussed in Section 6. “Analytical” computations
            use analytical derivatives; “Numerical” computations use numerical derivatives; “Ratio” is the
            ratio of the computation times for numerical and analytical derivatives.














            derivatives  using  ana  anlaytical  expression  rather  than  a  finite-difference
            approximation. This speeds up the computations by a factor that in practical
            applications can be between 3 and 80.

            References
            1.  Anderson, E. W., McGrattan, E. R., Hansen, L. P., and Sargent, T. J. (1995).
                 On the mechanics of forming and estimating dynamic linear economies.
                 In Handbook of Computational Economics, vol. 1, eds. H. M. Amman, D.
                 A. Kendrick, and J. Rust, pp. 171–252.
            2.  Ansley, C. F. and Kohn, R. (1985). A structured state space approach to
                 computing the likelihood of an ARIMA process and its derivatives. J.
                 Statist. Comput. Simul., 21, 135–169.
            3.  Durbin, J., and Koopman, S. J. (2012). Time Series Analysis by State Space
                 Methods. Oxford University
            4.  Press.
            5.  Hamilton, J. D. (1994). Time Series Analysis. Princeton University Press.
            6.  Harvey, A. C. (1989). Forecasting, Structural Time Series Models and the
                 Kalman Filter. Cambridge University Press.
            7.  Hosking, J. R. M., Natarajan, R., Ghosh, S., Subramanian, S., and Zhang, X.
                 (2013). Short-term forecasting of the daily load curve for residential
                 electricity usage in the Smart Grid. Appl. Stoch. Models Bus. Ind., 29,
                 604–620.
            8.  Hyndman, R. J., Koehler, A. B., Snyder, R. D., and Grose, S. (2002). A state
                 space framework for automatic forecasting using exponential smoothing
                 methods. Int. J. Forecasting, 18, 439-454.
            9.  Koopman, S. J., and Shephard, N. (1992). Exact score for time series
                 models in state space form. Biometrika, 79, 823–826.
            10.  Melard, G. (1985). Exact derivatives of the likelihood of ARMA processes.
                 In´ Proceedings of the Statistical Computing Section, pp. 187–192.
                 American Statistical Association, Washington, DC.



                                                               150 | I S I   W S C   2 0 1 9
   156   157   158   159   160   161   162   163   164   165   166