Page 275 - Contributed Paper Session (CPS) - Volume 4
P. 275

CPS2222 Abdullah M.R. et al.
                    150    86.58      100       13.42      0        0      0.128
             15%    20     4.1        100       95.9       0        0      0
                    40     53.5       100       46.5       0        0      0
                    100    81.51333   100       18.48667   0        0      0.003
                    150    85.45778   97.7778   14.54222   2.222    0      0.04866667
             20%    20     10.575     100       89.425     0        0      0
                    40     57.5375    100       42.4625    0        0      0
                    100    83.73      100       16.27      0        0      0
                    150    88.60333   100       11.39667   0        0      0.00266667

            5.   Conclusion
                It  is  crucial  to  detect  outliers  in  high  dimensional  data  as  it  may  give
            misleading conclusion about fitting of regression model. The FP-SVR has been
            developed to identify outliers in high dimensional data. Nevertheless, it is not
            very  successful  in  detection  outliers  in  high  dimensional  data.  Hence,  we
            developed Nu-SVR to remedy this problem. The numerical example signify
            that Nu-SVR is very successful in detecting high dimensional data in small and
            large samples.

            References
            1.  Alguraibawi, M., Midi, H., and Imon, A. H. M. (2015). A new robust
                 diagnostic plot for classifying good and bad high leverage points in a
                 multiple linear regression model. Mathematical Problems in Engineering,
                 1:1-12
            2.  Bagheri, A. (2011). Robust Estimation Methods And Robust
                 Multicollinearity Diagnostics For Multiple Regression Model in the
                 Presence of High Leverage Collinearity-Influential Observations
                 (Doctoral dissertation, Universiti Putra Malaysia).
            3.  Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992, July). A training
                 algorithm for optimal margin classifiers. In Proceedings of the fifth
                 annual workshop on Computational learning theory (pp. 144-152). ACM
            4.  Bühlmann, P., & Van De Geer, S. (2011). Statistics for high-dimensional
                 data: methods, theory and applications. Springer Science & Business
                 Media.
            5.  Ceperic, V., Gielen, G., & Baric, A. (2014). Sparse $$\varepsilon $$-tube
                 support vector regression by active learning. Soft Computing, 18(6),
                 1113-1126.
            6.  Chang, C. C., & Lin, C. J. (2002). Training v-support vector regression:
                 theory and algorithms. Neural computation, 14(8), 1959-1977.
            7.  Deng, N., Tian, Y., & Zhang, C. (2012). Support vector machines:
                 optimization-based theory, algorithms, and extensions. Chapman and
                 Hall/CRC.



                                                               264 | I S I   W S C   2 0 1 9
   270   271   272   273   274   275   276   277   278   279   280