Page 276 - Contributed Paper Session (CPS) - Volume 4
P. 276
CPS2222 Abdullah M.R. et al.
8. Dhhan, W., Rana, S., & Midi, H. (2015). Non-sparse ϵ-insensitive support
vector regression for outlier detection. Journal of Applied Statistics,
42(8), 1723-1739.
9. Guo, G., Zhang, J. S., & Zhang, G. Y. (2010). A method to sparsify the
solution of support vector regression. Neural Computing and
Applications, 19(1), 115-122.
10. Habshah, M., Norazan, M. R., & Rahmatullah Imon, A. H. M. (2009). The
performance of diagnostic-robust generalized potentials for the
identification of multiple high leverage points in linear regression.
Journal of Applied Statistics, 36(5), 507-520.
11. Imon, A. H. M. R., & Khan, M. A. I. (2003). A solution to the problem of
multicollinearity caused by the presence of multiple high leverage
points. Int. J. Stat. Sci, 2, 37-50.
12. Jordaan, E. M., & Smits, G. F. (2004, July). Robust outlier detection using
SVM regression. In IEEE International Joint Conference on Neural
Networks (Vol. 3, pp. 2017-2022).
13. Lim, H. A. and H. Midi (2016). Diagnostic Robust Generalized Potential
Based on Index Set Equality (DRGP (ISE)) for the identification of high
leverage points in linear model. Computational Statistics 3(31): 859-877.
14. Rojo-Álvarez, J. L., Martínez-Ramón, M., Figueiras-Vidal, A. R., García-
Armada, A., & Artés-Rodríguez, A. (2003). A robust support vector
algorithm for nonparametric spectral analysis. IEEE Signal Processing
Letters, 10(11), 320-323
15. Rana, S., Dhhan, W., & Midi, H. (2018). FIXED PARAMETERS SUPPORT
VECTOR REGRESSION FOR OUTLIER DETECTION. Economic Computation
& Economic Cybernetics Studies & Research, 52(2).
16. Schölkopf, B., Bartlett, P. L., Smola, A. J., & Williamson, R. C. (1999).
Shrinking the tube: a new support vector regression algorithm. In
Advances in neural information processing systems (pp. 330-336).
17. Schölkopf, B., Bartlett, P., Smola, A., & Williamson, R. (1998). Support
vector regression with automatic accuracy control. In ICANN 98 (pp.
111-116). Springer, London.
18. Vapnik, V. (1995). The nature of statistical learning theory, 1st ed.
Springer, New York
19. Williams, G. (2011). Decision trees. In Data Mining with Rattle and R (pp.
205-244). Springer, New York, NY.
20. Yohai, V. J. (1987). High breakdown-point and high efficiency robust
estimates for regression. The Annals of Statistics, 642-656
21. Üstün, B., Melssen, W. J., Oudenhuijzen, M., & Buydens, L. M. C. (2005).
Determination of optimal support vector regression parameters by
genetic algorithms and simplex optimization. Analytica Chimica Acta,
544(1-2), 292-305
265 | I S I W S C 2 0 1 9