Page 276 - Contributed Paper Session (CPS) - Volume 4
P. 276

CPS2222 Abdullah M.R. et al.
                  8.  Dhhan, W., Rana, S., & Midi, H. (2015). Non-sparse ϵ-insensitive support
                      vector regression for outlier detection. Journal of Applied Statistics,
                      42(8), 1723-1739.
                  9.  Guo, G., Zhang, J. S., & Zhang, G. Y. (2010). A method to sparsify the
                      solution of support vector regression. Neural Computing and
                      Applications, 19(1), 115-122.
                  10.  Habshah, M., Norazan, M. R., & Rahmatullah Imon, A. H. M. (2009). The
                      performance of diagnostic-robust generalized potentials for the
                      identification of multiple high leverage points in linear regression.
                      Journal of Applied Statistics, 36(5), 507-520.
                  11.  Imon, A. H. M. R., & Khan, M. A. I. (2003). A solution to the problem of
                      multicollinearity caused by the presence of multiple high leverage
                      points. Int. J. Stat. Sci, 2, 37-50.
                  12.  Jordaan, E. M., & Smits, G. F. (2004, July). Robust outlier detection using
                      SVM regression. In IEEE International Joint Conference on Neural
                      Networks (Vol. 3, pp. 2017-2022).
                  13.  Lim, H. A. and H. Midi (2016). Diagnostic Robust Generalized Potential
                      Based on Index Set Equality (DRGP (ISE)) for the identification of high
                      leverage points in linear model. Computational Statistics 3(31): 859-877.
                  14.  Rojo-Álvarez, J. L., Martínez-Ramón, M., Figueiras-Vidal, A. R., García-
                      Armada, A., & Artés-Rodríguez, A. (2003). A robust support vector
                      algorithm for nonparametric spectral analysis. IEEE Signal Processing
                      Letters, 10(11), 320-323
                  15.  Rana, S., Dhhan, W., & Midi, H. (2018). FIXED PARAMETERS SUPPORT
                      VECTOR REGRESSION FOR OUTLIER DETECTION. Economic Computation
                      & Economic Cybernetics Studies & Research, 52(2).
                  16.  Schölkopf, B., Bartlett, P. L., Smola, A. J., & Williamson, R. C. (1999).
                      Shrinking the tube: a new support vector regression algorithm. In
                      Advances in neural information processing systems (pp. 330-336).
                  17.  Schölkopf, B., Bartlett, P., Smola, A., & Williamson, R. (1998). Support
                      vector regression with automatic accuracy control. In ICANN 98 (pp.
                      111-116). Springer, London.
                  18.  Vapnik, V. (1995). The nature of statistical learning theory, 1st ed.
                      Springer, New York
                  19.  Williams, G. (2011). Decision trees. In Data Mining with Rattle and R (pp.
                      205-244). Springer, New York, NY.
                  20.  Yohai, V. J. (1987). High breakdown-point and high efficiency robust
                      estimates for regression. The Annals of Statistics, 642-656
                  21.  Üstün, B., Melssen, W. J., Oudenhuijzen, M., & Buydens, L. M. C. (2005).
                      Determination of optimal support vector regression parameters by
                      genetic algorithms and simplex optimization. Analytica Chimica Acta,
                      544(1-2), 292-305

                                                                     265 | I S I   W S C   2 0 1 9
   271   272   273   274   275   276   277   278   279   280   281