Page 75 - Contributed Paper Session (CPS) - Volume 7
P. 75
CPS2031 Javier Linkolk L. et al.
6. Zhao, H., Li, X., Zhang, Q., Jiang, X., Lin, J., Peters, G. P., and Zhang, L.,
“Effects of atmospheric transport and trade on air pollution mortality in
China”, Atmospheric Chemistry and Physics, vol. 17, no 17, p. 10367-
10381, 2017.
7. A. P. K. Tai, L. J. Mickley, and D. J. Jacob, “Correlations between fine
particulate matter (PM2.5) and meteorological variables in the United
States: Implications for the sensitivity of PM2.5 to climate change”,
Atmospheric Environment, vol. 44, no. 32, pp. 3976–3984, 2010.
8. O. Nicolis, C. Camano, J. C. Marin, and S. K. Sahu, “Spatio-temporal
modelling for assessing air pollution in santiago de chile”, in AIP
Conference Proceedings, vol. 1798, no. 1. AIP Publishing, 2017, p.
020113.
9. H. Riojas-Rodriguez, A. S. da Silva, J. L. Texcalac-Sangrador, and G. L.
Moreno-Banda, “Air pollution management and control in Latin America
and the Caribbean: implications for climate change”, Revista
panamericana de salúd pública = Pan American journal of public health,
vol. 40, no. 3, pp. 150–159, 2016.
10. M. A. Yáñez, R. Baettig, J. Cornejo, F. Zamudio, J. Guajardo, and R. Fica,
“Urban airborne matter in central and southern Chile: Effects of
meteorological conditions on fine and coarse particulate matter”,
Atmospheric Environment, vol. 161, pp. 221–234, 2017.
11. T. Kohonen, “The self-organizing map”, Proceedings of the IEEE, vol. 78,
no. 9, pp. 1464–1480, 1990.
12. R. Salas, S. Moreno, H. Allende, and C. Moraga, “A robust and flexible
model of hierarchical self-organizing maps for non-stationary
environments”, Neurocomputing, vol. 70, no. 16-18, pp. 2744– 2757,
2007.
13. Hochreiter, S., and Schmidhuber, J., “Long short-term memory”, Neural
computation, 1997, vol. 9, no 8, p. 1735-1780, 1997.
14. F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget:
Continual prediction with LSTM”, Neural Computation, vol. 12, no. 10,
pp. 2451–2471, 2000.
15. F. A. Gers, N. N. Schraudolph, and J. Schmidhuber, “Learning precise
timing with LSTM recurrent networks”, Journal of Machine Learning
Research, vol. 3, no. 1, pp. 115–143, 2003.
16. A. Graves, “Supervised Sequence Labelling With Recurrent Neural
Networks”, vol. 385. London, U.K.: Springer, 2012.
17. Karim, F., Majumdar, S., Darabi, H., and Chen, S., “LSTM fully
convolutional networks for time series classification”, IEEE Access, vol. 6,
pp. 1662-1669, 2018.
18. F. Cady, The Data Science Handbook. John Wiley & Sons, 2017.
62 | I S I W S C 2 0 1 9