Page 75 - Contributed Paper Session (CPS) - Volume 7
P. 75

CPS2031 Javier Linkolk L. et al.
            6.  Zhao, H., Li, X., Zhang, Q., Jiang, X., Lin, J., Peters, G. P., and Zhang, L.,
                 “Effects of atmospheric transport and trade on air pollution mortality in
                 China”, Atmospheric Chemistry and Physics, vol. 17, no 17, p. 10367-
                 10381, 2017.
            7.  A. P. K. Tai, L. J. Mickley, and D. J. Jacob, “Correlations between fine
                 particulate matter (PM2.5) and meteorological variables in the United
                 States: Implications for the sensitivity of PM2.5 to climate change”,
                 Atmospheric Environment, vol. 44, no. 32, pp. 3976–3984, 2010.
            8.  O. Nicolis, C. Camano, J. C. Marin, and S. K. Sahu, “Spatio-temporal
                 modelling for assessing air pollution in santiago de chile”, in AIP
                 Conference Proceedings, vol. 1798, no. 1. AIP Publishing, 2017, p.
                 020113.
            9.  H. Riojas-Rodriguez, A. S. da Silva, J. L. Texcalac-Sangrador, and G. L.
                 Moreno-Banda, “Air pollution management and control in Latin America
                 and the Caribbean: implications for climate change”, Revista
                 panamericana de salúd pública = Pan American journal of public health,
                 vol. 40, no. 3, pp. 150–159, 2016.
            10.  M. A. Yáñez, R. Baettig, J. Cornejo, F. Zamudio, J. Guajardo, and R. Fica,
                 “Urban airborne matter in central and southern Chile: Effects of
                 meteorological conditions on fine and coarse particulate matter”,
                 Atmospheric Environment, vol. 161, pp. 221–234, 2017.
            11.  T. Kohonen, “The self-organizing map”, Proceedings of the IEEE, vol. 78,
                 no. 9, pp. 1464–1480, 1990.
            12.  R. Salas, S. Moreno, H. Allende, and C. Moraga, “A robust and flexible
                 model of hierarchical self-organizing maps for non-stationary
                 environments”, Neurocomputing, vol. 70, no. 16-18, pp. 2744– 2757,
                 2007.
            13.  Hochreiter, S., and Schmidhuber, J., “Long short-term memory”, Neural
                 computation, 1997, vol. 9, no 8, p. 1735-1780, 1997.
            14.  F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget:
                 Continual prediction with LSTM”, Neural Computation, vol. 12, no. 10,
                 pp. 2451–2471, 2000.
            15.  F. A. Gers, N. N. Schraudolph, and J. Schmidhuber, “Learning precise
                 timing with LSTM recurrent networks”, Journal of Machine Learning
                 Research, vol. 3, no. 1, pp. 115–143, 2003.
            16.  A. Graves, “Supervised Sequence Labelling With Recurrent Neural
                 Networks”, vol. 385. London, U.K.: Springer, 2012.
            17.  Karim, F., Majumdar, S., Darabi, H., and Chen, S., “LSTM fully
                 convolutional networks for time series classification”, IEEE Access, vol. 6,
                 pp. 1662-1669, 2018.
            18.  F. Cady, The Data Science Handbook. John Wiley & Sons, 2017.



                                                                62 | I S I   W S C   2 0 1 9
   70   71   72   73   74   75   76   77   78   79   80