Page 162 - Special Topic Session (STS) - Volume 2
P. 162

STS474 Yoshihiro Y.
                  influenced directly by non-constant  ,  that results in biased estimation. GSE
                                                      0
                  works better to estimate  when  ,  is not constant than Zhu & Stein (2002).
                                                    0








































                  Figure 2: Histograms of the estimators by GSE and by Zhu and Stein (2002) evaluated
                  by 100 simulations for Cases 1, 2 and 3.

                  References
                  1.  Adler, R.J. (1981). The Geometry of Random Fields. Wiley, New York.
                  2.  Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods.
                     2nd edition. Springer, New York.
                  3.  Chilés, J.-P. and Del_ner,P. (2012). Geostatistics: Modeling Spatial
                     Uncertainty. 2nd ed. Wiley, New York.
                  4.  Constantine, A. G. and Hall, P. (1994). Characterizing surface smoothness
                     via estimation of effective fractal dimension. J. Roy. Statist. Soc. Ser. B 56,
                     97-113.
                  5.  Cressie, N.A.C. (1993). Statistics for Spatial Data. Revised ed. Wiley, New
                      York.
                  6.  Davis, S. and Hall, P. (1999). Fractal analysis of surface roughness by using
                      spatial data. J. Roy. Statist. Soc. Ser. B 61, 3-37.



                                                                     151 | I S I   W S C   2 0 1 9
   157   158   159   160   161   162   163   164   165   166   167