Page 189 - Special Topic Session (STS) - Volume 4
P. 189

STS579 Anastasiia Rytova et al.
            of a BRW with a finite variance tends to zero, but of a heavy-tailed BRW tends
            to a positive constant. For ℤ ,   ≥  3, the dimension of the lattice is already
                                        
            large enough even for a BRW with a finite variance, in this case the underlying
            random walk is transient, so that for both BRWs the population has a non-zero
            probability of survival.

            Acknowledgement
            This work is supported by the Russian Foundation for Basic Research (grant
            no. 17-01-0468).

            References
            1.  Agbor, A., Molchanov, S., & Vainberg B. (2015). Global limit Theorems on
                the convergence of multidimen-sional random walks to stable processes.
                Stochastics and Dynamics.15(3): 1550024.
            2.  Albeverio, S., Bogachev, L. V., & Yarovaya E. B. (1998). Asymptotics of
                branching symmetric random walk on the lattice with a single source.
                C.R. Acad. Sci. Paris, Ser. I, Math.
            3.  Bolker, B. M., Pacala, S.W., & Neuhauser, C. (2003). Spatial dynamics in
                model plant communities: what do we really know? Am. Nat. 162, 135–
                148.
            4.  Borovkov, A., & Borovkov, K. (2008). Asymptotic Analysis of Random
                Walks. Heavy-Tailed Distributions. Cambridge University Press.
            5.  Ermakova, E., Makhmutova, P., & Yarovaya, E. (2019). Branching random
                walks and their applications for epidemic modeling. Stochastic Models,
                DOI: 10.1080/15326349.2019.1572519
            6.  Feller, W. (1971). An introduction to probability theory and its
                applications. Vol. II. Second edition. John Wiley & Sons, Inc., New York-
                London-Sydney.
            7.  Haldane, J. B. S. (1927). A Mathematical Theory of Natural and Artificial
                Selection, Part V: Selection and Mutation. PCPS 23(7): 838–844.
            8.  Khristolyubov, I., & Yarovaya, E. (2019). A Limit Theorem for Supercritical
                Branching Random Walks with Branching Sources of Varying Intensity.
                arXiv.org. URL: https://arxiv.org/pdf/1904.01468.
            9.  Molchanov, S., & Whitmeyer, J. (2017). Spatial Models of Population
                Processes. In: Panov V. (eds) Mod¬ern Problems of Stochastic Analysis
                and Statistics. MPSAS 2016. Springer Proceedings in Mathematics &
                Statistics, vol 208. Springer, Cham.
            10. Rytova, A. I., & Yarovaya, E. B. (2016). Multidimensional Watson lemma
                and its applications. Mathemati-cal Notes, 99(3): 406–412.
            11. Rytova, A., & Yarovaya, E. (2018). Survival Analysis of Particle Populations
                in Branching Random Walks. arXiv.org. URL:
                https://arxiv.org/abs/1812.09909.



                                                               178 | I S I   W S C   2 0 1 9
   184   185   186   187   188   189   190   191   192   193   194