Page 190 - Special Topic Session (STS) - Volume 4
P. 190
STS579 Anastasiia Rytova et al.
12. Vatutin, V. A., Topchii,V. A., & Yarovaya, E. B. (2004). Catalytic branching
random walk and queueing systems with random number of
independent servers. Theor. Probability and Math. Statist. 69: 1–15.
13. Yarovaya, E. B. (1991). Use of spectral methods to study branching
processes with diffusion in a noncompact phase space. Theor. Math.
Phys.
14. Yarovaya, E.B. (2007) Branching Walks in Heterogeneous Medium, Center
Appl. Studies at Moscow State Univ., Dep. Mech. and Math., Moscow, (in
Russian).
15. Yarovaya, E. B. (2009). Critical branching random walks on low-
dimensional lattices. Discrete Math. Appl, 19(2):191–214.
16. Yarovaya, E. B. (2010). Models of branching walks and their application in
reliability theory. Autom. Re-mote Control, 71(7): 1308–1324.
17. Yarovaya, E.B. (2012). Spectral properties of evolutionary operators in
branching random walk models. Math Notes 92: 115.
https://doi.org/10.1134/S0001434612070139
18. Yarovaya, E. (2013a). Branching random walks with heavy tails. Commun.
Statist. Theory Methods. 42(16): 3001–3010.
19. Yarovaya, E. B. (2013b). Branching random walks with several sources.
Math. Popul. Stud., 20(1): 14–26.
20. Yarovaya, E. B. (2015). The structure of the positive discrete spectrum of
the evolution operator arising in branching random walks. Dokl. Math.
92(1): 507–510. DOI: https://doi.org/10.1134/S1064562415040316.
21. Zhizhina, E., Komech, S., & Descombes, X. (2015). Modelling axon
growing using CTRW. arXiv.org. URL: https://arxiv.org/pdf/1512.02603.
179 | I S I W S C 2 0 1 9