Page 190 - Special Topic Session (STS) - Volume 4
P. 190

STS579 Anastasiia Rytova et al.
                  12. Vatutin, V. A., Topchii,V. A., & Yarovaya, E. B. (2004). Catalytic branching
                      random walk and queueing systems with random number of
                      independent servers. Theor. Probability and Math. Statist. 69: 1–15.
                  13. Yarovaya, E. B. (1991). Use of spectral methods to study branching
                      processes with diffusion in a noncompact phase space. Theor. Math.
                      Phys.
                  14. Yarovaya, E.B. (2007) Branching Walks in Heterogeneous Medium, Center
                      Appl. Studies at Moscow State Univ., Dep. Mech. and Math., Moscow, (in
                      Russian).
                  15. Yarovaya, E. B. (2009). Critical branching random walks on low-
                      dimensional lattices. Discrete Math. Appl, 19(2):191–214.
                  16. Yarovaya, E. B. (2010). Models of branching walks and their application in
                      reliability theory. Autom. Re-mote Control, 71(7): 1308–1324.
                  17. Yarovaya, E.B. (2012). Spectral properties of evolutionary operators in
                      branching random walk models. Math Notes 92: 115.
                      https://doi.org/10.1134/S0001434612070139
                  18. Yarovaya, E. (2013a). Branching random walks with heavy tails. Commun.
                      Statist. Theory Methods. 42(16): 3001–3010.
                  19. Yarovaya, E. B. (2013b). Branching random walks with several sources.
                      Math. Popul. Stud., 20(1): 14–26.
                  20. Yarovaya, E. B. (2015). The structure of the positive discrete spectrum of
                      the evolution operator arising in branching random walks. Dokl. Math.
                      92(1): 507–510. DOI: https://doi.org/10.1134/S1064562415040316.
                  21. Zhizhina, E., Komech, S., & Descombes, X. (2015). Modelling axon
                      growing using CTRW. arXiv.org. URL: https://arxiv.org/pdf/1512.02603.

































                                                                     179 | I S I   W S C   2 0 1 9
   185   186   187   188   189   190   191   192   193   194   195