Page 100 - Contributed Paper Session (CPS) - Volume 1
P. 100

CPS1158 Varun A. et al.
                  posterior samples. We carried out 1000 iterations and burn-in 200 to get the
                  approximate  estimated  values  and  recorded  that  generate  sample  is
                  convergent and stationary using Gelman-Rubin and Geweke test.  Then, the
                  corresponding outcomes of posterior estimators and its standard deviation
                  are  recorded  in  Table  1-2.  From  Table  1-2,  one  can  easily  conclude  that
                  standard deviation is not much wider and its truly indicating the estimated
                  parameter  values.  We  also  obtained  the  credible  interval  in  table  3  for
                  establishing the confidence interval of the estimated value and observed that
                  some parameters have not much significant affect on the series because its
                  intervals contain zero value.














                            Figure 1: Tree ring series with posterior distribution of the break date

                               Table 5: Bayes estimate for TAR model parameters in a Tree ring series
                        Parameter   SELF   ALF    LLF   Parameter   SELF    ALF     LLF
                           1 r    -0.0959   -0.1081   -0.0977   2 r    0.1772   0.1664   0.1754
                           11    -0.014   -0.0143   -0.0169    21    0.0005   0.0002   0
                           1 ( 11 )    -0.5414   -0.5437   -0.5501   1  (  21 )     -0.5394   -0.5378   -0.5489
                           2  ( 11 )     -0.3431   -0.3449   -0.3545   2  (  21 )     -0.3256   -0.3223   -0.3382
                           3  ( 11 )     -0.0993   -0.1007   -0.1138    ( 3  21 )     -0.1995   -0.1977   -0.2126
                           4  ( 11 )     0.1091   0.1105   0.0949   ( 4  21 )     -0.134   -0.135   -0.1482
                           5  ( 11 )     0.0039   0.0032   -0.0074   5  ( 21 )     0.0237   0.0241   0.0111
                           6  ( 11 )     0.0669   0.0687   0.0581    ( 6 21 )     -0.0564   -0.0572   -0.068
                           7  ( 11 )     0.2512   0.2511   0.2437   ( 7   21 )     -0.0146   -0.0137   -0.0261
                           8  ( 11 )     0.1228   0.1221   0.1096    8 ( 21 )     0.0416   0.0396   0.0255
                                                            2
                           11    -0.0189   -0.0187   -0.0191    21    -0.0373   -0.0361   -0.0423
                           2
                           12    -0.4767   -0.4774   -0.4784    22    -0.7211   -0.722   -0.7473
                          1  ( 12 )     -0.3158   -0.3161   -0.3178    1 (  22 )     -0.4252   -0.4237   -0.4711
                          2  ( 12 )     -0.2031   -0.2027   -0.2052    2 (  22 )     -0.2185   -0.2201   -0.2673
                           ( 12 )     -0.178   -0.1782   -0.1802    (  22 )     0.1218   0.1241   0.0789
                          3                                3
                          4  ( 12 )     -0.2775   -0.2768   -0.28    4 (  22 )     0.1825   0.1851   0.1308
                          5  ( 12 )     -0.2117   -0.2114   -0.2145    5 ( 22 )     -0.1701   -0.1703   -0.23
                           6 ( 12 )     -0.1317   -0.1311   -0.1342    6 ( 22 )     -0.0052   -0.0043   -0.0581
                          7  ( 12 )     0.1154   0.116   0.1127   7  (  22 )     0.0767   0.0753   0.0389
                           8 ( 12 )     0.2314   0.2298   0.2309    8 ( 22 )     0.138   0.1378   0.1379
                                                            2
                           2
                           12    0.1247   0.125   0.1247    22    0.2953   0.2921   0.2939





                                                                      89 | I S I   W S C   2 0 1 9
   95   96   97   98   99   100   101   102   103   104   105