Page 101 - Contributed Paper Session (CPS) - Volume 1
P. 101

CPS1158 Varun A. et al.

                             Table 8: Bayesian credible interval of fitted TAR model parameters
                       SELF      ALF        LLF            SELF       ALF       LLF
                 1 r    (-0.11, -0.08)   (-0.13, -0.08)   (-0.12, -0.08)   2 r    (0.16, 0.20)   (0.14, 0.20)   (0.16, 0.20)
                    (-0.03, 0.00)   (-0.03, 0.00)   (-0.03, -0.00)    21     (-0.01, 0.01)   (-0.01, 0.01)   (-0.01, 0.01)
                 11
                1 ( 11 )     (-0.57, -0.52)   (-0.57, -0.52)   (-0.57, -0.53)   1  (  21 )     (-0.56, -0.51)   (-0.57, -0.51)   (-0.57, -0.52)
                2  ( 11 )     (-0.37, -0.31)   (-0.38, -0.30)   (-0.38, -0.33)   2  (  21 )     (-0.36, -0.29)   (-0.36, -0.29)   (-0.37, -0.31)
                3  ( 11 )     (-0.13, -0.07)   (-0.14, -0.06)   (-0.15, -0.08)    3 ( 21 )     (-0.23, -0.17)   (-0.23, -0.16)   (-0.24, -0.18)
                4  ( 11 )     (0.08, 0.14)   (0.07, 0.15)   (0.06, 0.13)   4  (  21 )     (-0.17, -0.10)   (-0.18, -0.10)   (-0.18, -0.12)
                5  ( 11 )     (-0.02, 0.04)   (-0.03, 0.04)   (-0.03, 0.02)   5  (  21 )     (-0.01, 0.06)   (-0.01, 0.06)   (-0.02, 0.04)
                6  ( 11 )     (0.04, 0.09)   (0.04, 0.10)   (0.03, 0.08)    6 ( 21 )     (-0.08, -0.03)   (-0.09, -0.02)   (-0.10, -0.04)
                7  ( 11 )     (0.23, 0.27)   (0.22, 0.28)   (0.22, 0.27)   7  (  21 )     (-0.04, 0.02)   (-0.05, 0.02)   (-0.06, 0.00)
                8  ( 11 )     (0.09, 0.16)   (0.08, 0.16)   (0.08, 0.14)    8 ( 21 )     (0.01, 0.08)   (-0.00, 0.08)   (-0.01, 0.06)
                                                     2
                 11    (-0.02, -0.02)   (-0.02, -0.01)   (-0.02, -0.02)    21    (-0.06, -0.02)   (-0.06, -0.01)   (-0.06, -0.02)
                 2
                 12     (-0.49, -0.47)   (-0.49, -0.46)   (-0.49, -0.47)    22     (-0.76,  -0.68)   (-0.78, -0.67)   (-0.79, -0.70)

                1  ( 12 )     (-0.33, -0.30)   (-0.33, -0.30)   (-0.33, -0.31)    1 ( 22 )     (-0.49, -0.36)   (-0.50, -0.36)   (-0.53, -0.41)
                2  ( 12 )     (-0.22, -0.19)   (-0.22, -0.19)   (-0.22, -0.19)    2 ( 22 )     (-0.28, -0.16)   (-0.30, -0.15)   (-0.33, -0.20)
                3 ( 12 )     (-0.19, -0.17)   (-0.19, -0.16)   (-0.19, -0.17)    3 ( 22 )     (0.07, 0.18)   (0.05, 0.19)   (0.02, 0.14)
                4  ( 12 )     (-0.29, -0.26)   (-0.29, -0.26)   (-0.29, -0.27)    4 ( 22 )     (0.12, 0.25)   (0.11, 0.26)   (0.07, 0.19)
                5  ( 12 )     (-0.23, -0.20)   (-0.23, -0.19)   (-0.23, -0.20)    5 ( 22 )     (-0.24, -0.10)   (-0.25, -0.07)   (-0.30, -0.15)

                6 ( 12 )     (-0.15, -0.12)   (-0.15, -0.11)   (-0.15, -0.12)    6 ( 22 )     (-0.06, 0.06)   (-0.09, 0.07)   (-0.13, 0.00)
                7  ( 12 )     (0.10, 0.13)   (0.10, 0.13)   (0.10, 0.13)   7  ( 22 )     (0.03, 0.13)   (0.00,0.14)   (-0.02, 0.09)
                8 ( 12 )     (0.23, 0.24)   (0.22, 0.24)   (0.22, 0.24)    8 ( 22 )     (0.14, 0.14)   (0.13, 0.14)   (0.14, 0.14)
                 2
                                                     2
                 12    (0.12, 0.13)   (0.12, 0.13)   (0.12, 0.13)    22    (0.29, 0.31)   (0.28, 0.30)   (0.28, 0.30)

            5.  Conclusion
                In  this  article,  we  have  proposed  a  Bayesian  framework  to  analysis  the
            multiple regime TAR model with multiple structural breaks. This methodology
            consist  identification  of  break  points  and  estimation  of  MB-TAR  model
            parameters.  Under  Bayesian  inference,  conditional  posterior  distribution  is
            derived for estimation of the unknown model parameters and computed using
            Gibbs  sampler  and  M-H  algorithm  for  standard  and  non  standard  form
            distribution,  respectively.  From  the  numerical  illustration,  the  proposed
            Bayesian setup is appropriately determine the break points and estimate the
            parameters associated with model.

            References
            1.  Albert, J. H., & Chib, S. (1993). Bayes inference via Gibbs sampling of
                 autoregressive time series subject to Markov mean and variance shifts.
                 Journal of Business & Economic Statistics, 11(1), 1-15.
             2.  Chan, K. S. (1993). Consistency and limiting distribution of the least
                 squares estimator of a threshold autoregressive model. The annals of
                 statistics, 21(1), 520-533.
                                                                90 | I S I   W S C   2 0 1 9
   96   97   98   99   100   101   102   103   104   105   106