Page 102 - Contributed Paper Session (CPS) - Volume 1
P. 102
CPS1158 Varun A. et al.
3. Charif, M. A. I. H. A. (2003). Bayesian Inference for threshold moving
average models. Metron, 61(1), 119-132.
4. Chen, C. W. (1998). A Bayesian analysis of generalized threshold
autoregressive models. Statistics & probability letters, 40(1), 15-22.
5. Chen, C. W., & Lee, J. C. (1995). Bayesian inference of threshold
autoregressive models. Journal of Time Series Analysis, 16(5), 483-492.
6. Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for
autoregressive time series with a unit root. Journal of the American
statistical association, 74(366a), 427-431.
7. Gao, Z., & Ling, S. (2018). Statistical inference for structurally changed
threshold autoregressive models, Statistica Sinica, forthcoming.
8. Gonzalo, J., & Wolf, M. (2005). Subsampling inference in threshold
autoregressive models. Journal of Econometrics, 127(2), 201-224.
9. Li, D., Li, W. K., & Ling, S. (2011). On the least squares estimation of
threshold autoregressive moving-average models. Statistics and Its
Interface, 4, 183-196.
10. Liu, W., Ling, S., & Shao, Q. M. (2011). On non-stationary threshold
autoregressive models. Bernoulli, 17(3), 969-986.
11. Meligkotsidou, L., Tzavalis, E., & Vrontos, I. D. (2011). A Bayesian Analysis
of Unit Roots and Structural Breaks in the Level, Trend, and Error
Variance of Autoregressive Models of Economic Series. Econometric
Reviews, 30(2), 208-249.
12. Nelson, C. R., & Plosser, C. R. (1982). Trends and random walks in
macroeconmic time series: some evidence and implications. Journal of
monetary economics, 10(2), 139-162.
13. Pan, J., Xia, Q., & Liu, J. (2017). Bayesian analysis of multiple thresholds
autoregressive model. Computational Statistics, 32(1), 219-237.
14. Tong, H. (1983). Threshold models in non-linear time series analysis.
Lecture notes in statistics, No. 21.
15. Wang, J., & Zivot, E. (2000). A Bayesian time series model of multiple
structural changes in level, trend, and variance. Journal of Business &
Economic Statistics, 18(3), 374-386.
16. Watson, M. W. (1986). Univariate detrending methods with stochastic
trends. Journal of monetary economics, 18(1), 49-75.
17. Xia, Q., Liu, J., Pan, J., & Liang, R. (2012). Bayesian analysis of two-regime
threshold autoregressive moving average model with exogenous inputs.
Communications in Statistics-Theory and Methods, 41(6), 1089-1104.
18. Yau, C. Y., Tang, C. M., & Lee, T. C. (2015). Estimation of multiple-regime
threshold autoregressive models with structural breaks. Journal of the
American Statistical Association, 110(511), 1175-1186.
19. Yu, P. (2012). Likelihood estimation and inference in threshold
regression. Journal of Econometrics, 167(1), 274-294.
91 | I S I W S C 2 0 1 9