Page 102 - Contributed Paper Session (CPS) - Volume 1
P. 102

CPS1158 Varun A. et al.
                   3.  Charif, M. A. I. H. A. (2003). Bayesian Inference for threshold moving
                      average models. Metron, 61(1), 119-132.
                   4.  Chen, C. W. (1998). A Bayesian analysis of generalized threshold
                      autoregressive models. Statistics & probability letters, 40(1), 15-22.
                   5.  Chen, C. W., & Lee, J. C. (1995). Bayesian inference of threshold
                      autoregressive models. Journal of Time Series Analysis, 16(5), 483-492.
                   6.  Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for
                      autoregressive time series with a unit root. Journal of the American
                      statistical association, 74(366a), 427-431.
                   7.  Gao, Z., & Ling, S. (2018). Statistical inference for structurally changed
                      threshold autoregressive models, Statistica Sinica, forthcoming.
                   8.  Gonzalo, J., & Wolf, M. (2005). Subsampling inference in threshold
                      autoregressive models. Journal of Econometrics, 127(2), 201-224.
                   9.  Li, D., Li, W. K., & Ling, S. (2011). On the least squares estimation of
                      threshold autoregressive moving-average models. Statistics and Its
                      Interface, 4, 183-196.
                   10. Liu, W., Ling, S., & Shao, Q. M. (2011). On non-stationary threshold
                      autoregressive models. Bernoulli, 17(3), 969-986.
                   11. Meligkotsidou, L., Tzavalis, E., & Vrontos, I. D. (2011). A Bayesian Analysis
                      of Unit Roots and Structural Breaks in the Level, Trend, and Error
                      Variance of Autoregressive Models of Economic Series. Econometric
                      Reviews, 30(2), 208-249.
                   12. Nelson, C. R., & Plosser, C. R. (1982). Trends and random walks in
                      macroeconmic time series: some evidence and implications. Journal of
                      monetary economics, 10(2), 139-162.
                   13. Pan, J., Xia, Q., & Liu, J. (2017). Bayesian analysis of multiple thresholds
                      autoregressive model. Computational Statistics, 32(1), 219-237.
                   14. Tong, H. (1983). Threshold models in non-linear time series analysis.
                      Lecture notes in statistics, No. 21.
                   15. Wang, J., & Zivot, E. (2000). A Bayesian time series model of multiple
                      structural changes in level, trend, and variance. Journal of Business &
                      Economic Statistics, 18(3), 374-386.
                   16. Watson, M. W. (1986). Univariate detrending methods with stochastic
                      trends. Journal of monetary economics, 18(1), 49-75.
                   17. Xia, Q., Liu, J., Pan, J., & Liang, R. (2012). Bayesian analysis of two-regime
                      threshold autoregressive moving average model with exogenous inputs.
                      Communications in Statistics-Theory and Methods, 41(6), 1089-1104.
                   18. Yau, C. Y., Tang, C. M., & Lee, T. C. (2015). Estimation of multiple-regime
                      threshold autoregressive models with structural breaks. Journal of the
                      American Statistical Association, 110(511), 1175-1186.
                   19. Yu, P. (2012). Likelihood estimation and inference in threshold
                      regression. Journal of Econometrics, 167(1), 274-294.

                                                                      91 | I S I   W S C   2 0 1 9
   97   98   99   100   101   102   103   104   105   106   107