Page 109 - Contributed Paper Session (CPS) - Volume 2
P. 109

CPS1443 Shogo H.N. et al.
               Although the contaminating noise has small variance such as 10  −4  , we
                                                                                  2
            can see the serious influence on the performance of the existent method (LGA)
            for the noisy diffusion model, and our proposal overwhelms in terms of both
            mean and RMSE compared to LGA.

            4.  Discussion and Conclusion
               We propose the adaptive estimation procedure for discretely and noisily
            observed ergodic diffusion processes and show the theoretical results such as
            consistency,  asymptotic  normality  and  convergence  of  moments  of  the
            estimators. Our method has advantages such as asymptotic normality without
            assuming  that  the  variance  of  noise  is  known,  convergence  of  moments
            discussed  in  Yoshida  (2011),  and  smaller  computational  burden  for  high-
            dimensional  parameters  in  optimisation  compared  to  the  existent
            simultaneous  approach.  In  simulation,  we  see  unstable  behaviour  of  the
            estimator based on the LGA not considering the noise and the significance to
            use our method when the data is contaminated by exogenous noise.

            References
            1.  Adams, R. A. and Fournier, J. J. F. (2003). Sobolev spaces. Second edition.
                 Elsevier/Academic Press, Amsterdam.
            2.  Bibby, B. M. and Sørensen, M. (1995). Martingale estimating functions
                 for discretely observed diffusion processes. Bernoulli, 1:17–39.
            3.  Favetto, B. (2014). Parameter estimation by contrast minimization for
                 noisy observations of a diffusion process. Statistics, 48(6):1344–1370.
            4.  Favetto, B. (2016). Estimating functions for noisy observations of ergodic
                 diffusions. Statistical Inference for Stochastic Processes, 19:1–28.
            5.  Florens-Zmirou, D. (1989). Approximate discrete time schemes for
                 statistics of diffusion processes. Statistics, 20(4):547–557.
            6.  Gloter, A. and Jacod, J. (2001a). Diffusions with measurement errors. I.
                 local asymptotic normality. ESAIM: Probability and Statistics, 5:225–242.
            7.  Gloter, A. and Jacod, J. (2001b). Diffusions with measurement errors. II.
                 optimal estimators. ESAIM: Probability and Statistics, 5:243–260.
            8.  Jacod, J., Li, Y., Mykland, P. A., Podolskij, M., and Vetter, M. (2009).
                 Microstructure noise in the continuous case: the pre-averaging
                 approach. Stochastic Processes and their Applications, 119(7):2249–
                 2276.
            9.  Kessler, M. (1995). Estimation des parametres d’une diffusion par des
                 contrastes corriges. Comptes rendus de l’Académie des sciences. Série 1,
                 Mathématique, 320(3):359–362.
            10.  Kessler, M. (1997). Estimation of an ergodic diffusion from discrete
                 observations. Scandinavian Journal of Statistics, 24:211–229.



                                                                98 | I S I   W S C   2 0 1 9
   104   105   106   107   108   109   110   111   112   113   114