Page 106 - Contributed Paper Session (CPS) - Volume 2
P. 106

CPS1443 Shogo H.N. et al.
                  the final one is the local means generated from the noisy observation. We can
                  see that indeed the local means recover the information of the latent process
                  to some extent in comparison to the original observation.
























                           Figure: the latent OU process, noisy observation, and local means

                      In the second place, we define the adaptive Gaussian-type quasi-likelihood

                  functions ℍ  1, (|Λ) and ℍ 2, (|) such that

                                        −2
                                     1       2Δ              −1           ⊗2
                                                     ̅
                                                                   ̅
                                                  
                                                                          ̅
                      ℍ   (|Λ) = −  ∑ [(      ( −1 , , Λ))  [( +1  −  )  ]
                        1,
                                                  
                                                                          
                                     2        3
                                       =1
                                               
                                                 ̅
                                     + log det  ( −1 , , Λ)] ,
                                               
                                        −2
                                     1                   −1                          ⊗2
                                                             ̅
                                                 ̅
                                                                    ̅
                                                                             ̅
                      ℍ 2, (|) = −  ∑ (Δ ( −1 , ))  [( +1  −  − Δ ( −1 , ))  ],
                                                                    
                                             
                                                                         
                                     2
                                       =1

                                                      
                  where for any matrix ,  ⊗2  ≔  , for any same size matrix   and  ,
                                                                                           2
                                                                                    1
                                                                                    2−
                                                            
                                    
                   [ ] ≔ tr(  ), (, ) ≔  ⊗2 (, ),  (, , Λ) ≔ (, ) + 3Δ −1 Λ, and
                       2
                    1
                                                            
                                 1
                                   2
                                                                                    
                   ∈ (1,2] is a  tuning parameter controlling the balance between   and  .
                                                                                    
                                                                                           
                  The corresponding adaptive maximum-likelihood-type estimators  ̂  and 
                                                                                           ̂
                                                                                            
                                                                                    
                  are defined as the random variables satisfying

                                                ̂
                                                                   ̂
                                        ℍ  1, (̂ |Λ ) = sup ℍ  1, (|Λ ) ,
                                               
                                                  
                                                                    
                                                       ∈Θ 1
                                              ̂
                                        ℍ 2, ( |̂ ) = sup ℍ 2, (|̂ ),
                                                                    
                                                  
                                              
                                                       ∈Θ 2

                  where Λ  is the estimator of Λ defined as
                         ̂
                          
                                                                      95 | I S I   W S C   2 0 1 9
   101   102   103   104   105   106   107   108   109   110   111