Page 235 - Contributed Paper Session (CPS) - Volume 3
P. 235
CPS2002 Atina A. et al.
References
1. Dahal, H., & Routray, J. K. (2011). Identifying Associations Between Soil
and Production Variables Using Linear Multiple Regression Models. The
Journal of Agriculture and Environment, 12, 27–37.
2. Luminto, & Harlili. (2017). Weather analysis to predict rice cultivation time
using multiple linear regression to escalate farmer’s exchange rate.
Proceedings - 2017 International Conference on Advanced Informatics:
Concepts, Theory and Applications, ICAICTA 2017, 0–3.
3. Nelsen, R. B. (2006). An Introduction to Copulas.
4. Sellam, V., & Poovammal, E. (2016). Prediction of Crop Yield Using
Regression Analysis. Indian Journal of Science and Technology, 9(38), 1–
5.
5. Vergara, O., Zuba, G., Doggett, T., & Seaquist, J. (2008). Modeling the
Potential Impact of Catastrophic Weather on Crop Insurance Industry
Portfolio Losses. American Journal of Agricultural Economics, 90(5), 1256–
1262.
6. Xu, W., Filler, G., Odening, M., & Okhrin, O. (2010). On The Systemic Nature
of Weather Risk. Agricultural Finance Review, 70(2), 267–284.
7. Xu, W., Odening, M., Ji, C., & Okhrin, O. (2010). Systemic Weather Risk and
Crop Insurance: The Case of China. SFB 649 Discussion Paper 2010-053.
8. Zhu, Y., Ghosh, S. K., & Goodwin, B. K. (2008). Modeling Dependence in
the Design of Whole Farm - A Copula-Based Model Approach. Selected
Paper Prepared for Presentation at the American Agricultural Economics
Association Annual Meeting, July 27 - 29, 27–29.
224 | I S I W S C 2 0 1 9