Page 235 - Contributed Paper Session (CPS) - Volume 3
P. 235

CPS2002 Atina A. et al.
            References
             1.  Dahal, H., & Routray, J. K. (2011). Identifying Associations Between Soil
                 and Production Variables Using Linear Multiple Regression Models. The
                 Journal of Agriculture and Environment, 12, 27–37.
             2.  Luminto, & Harlili. (2017). Weather analysis to predict rice cultivation time
                 using  multiple  linear  regression  to  escalate  farmer’s  exchange  rate.
                 Proceedings - 2017 International Conference on Advanced Informatics:
                 Concepts, Theory and Applications, ICAICTA 2017, 0–3.
             3.  Nelsen, R. B. (2006). An Introduction to Copulas.
             4.  Sellam,  V.,  &  Poovammal,  E.  (2016).  Prediction  of  Crop  Yield  Using
                 Regression Analysis. Indian Journal of Science and Technology, 9(38), 1–
                 5.
             5.  Vergara,  O.,  Zuba,  G.,  Doggett,  T.,  &  Seaquist,  J.  (2008).  Modeling  the
                 Potential  Impact  of  Catastrophic  Weather  on  Crop  Insurance  Industry
                 Portfolio Losses. American Journal of Agricultural Economics, 90(5), 1256–
                 1262.
             6.  Xu, W., Filler, G., Odening, M., & Okhrin, O. (2010). On The Systemic Nature
                 of Weather Risk. Agricultural Finance Review, 70(2), 267–284.
             7.  Xu, W., Odening, M., Ji, C., & Okhrin, O. (2010). Systemic Weather Risk and
                 Crop Insurance: The Case of China. SFB 649 Discussion Paper 2010-053.
             8.  Zhu, Y., Ghosh, S. K., & Goodwin, B. K. (2008). Modeling Dependence in
                 the Design of Whole Farm - A Copula-Based Model Approach. Selected
                 Paper Prepared for Presentation at the American Agricultural Economics
                 Association Annual Meeting, July 27 - 29, 27–29.
































                                                               224 | I S I   W S C   2 0 1 9
   230   231   232   233   234   235   236   237   238   239   240