Page 80 - Contributed Paper Session (CPS) - Volume 1
P. 80

CPS1085 Manoj C.
                  5.  David,  H.  A.  (1973)  Concomitants  of  order  statistics.  Bulletin  of  the
                      International Statistical Institute 45, 295-300.
                  6.  Enis, P., Geisser, S. (1971) Estimation of the probability that Y < X, Journal
                      of American Statistical Association, 66, 162-186.
                  7.  Hanagal, D.D. (1995) Testing reliability in a bivariate exponential stress-
                      strength model, Journal of the Indian Statistical Association, 33, 41-45.
                  8.  Hanagal, D.D. (1997) Estimation of reliability when stress is censored at
                      strength, Communication in Statistics : Theory and Methods, 26(4), 911-
                      919.
                  9.  Hoffman,  H.  J.,  Johnson,  R.  E.  (2015)  Pseudo-likelihood  Estimation  of
                      Multivariate Normal Parameters in the Presence of Left-Censored Data,
                      Journal of Agricultural, Biological, and Environmental Statistics, 20, 156–
                      171.
                  10.  Jana, P.K. (1994) Estimation of P(Y < X) in the bivariate exponential case
                      due to Marshall-Olkin, Journal of the Indian Statistical Association, 32, 35-
                      37.
                  11.  Jana,P.K.,  Roy,D.  (1994)  Estimation  of  reliability  under  stress-strength
                      model in a bivariate exponential set-up, Calcutta Statistical. Association
                      Bulletin, 44, 175-181.
                  12.  Mukherjee,  S.P.  and  Saran,  L.K.  (1985)  Estimation  of  failure  probability
                      from a bivariate normal stress-strength distribution, Microelectronics and
                      Reliability, 25, 692-702.
                  13.  Tokdar,  S.  T.,  Tass,  R.  E.  (2010)  Importance  sampling:  a  review  Wiley
                      Interdisciplinary Reviews: Computational Statistics 2, 54-60.

































                                                                      69 | I S I   W S C   2 0 1 9
   75   76   77   78   79   80   81   82   83   84   85