Page 80 - Contributed Paper Session (CPS) - Volume 1
P. 80
CPS1085 Manoj C.
5. David, H. A. (1973) Concomitants of order statistics. Bulletin of the
International Statistical Institute 45, 295-300.
6. Enis, P., Geisser, S. (1971) Estimation of the probability that Y < X, Journal
of American Statistical Association, 66, 162-186.
7. Hanagal, D.D. (1995) Testing reliability in a bivariate exponential stress-
strength model, Journal of the Indian Statistical Association, 33, 41-45.
8. Hanagal, D.D. (1997) Estimation of reliability when stress is censored at
strength, Communication in Statistics : Theory and Methods, 26(4), 911-
919.
9. Hoffman, H. J., Johnson, R. E. (2015) Pseudo-likelihood Estimation of
Multivariate Normal Parameters in the Presence of Left-Censored Data,
Journal of Agricultural, Biological, and Environmental Statistics, 20, 156–
171.
10. Jana, P.K. (1994) Estimation of P(Y < X) in the bivariate exponential case
due to Marshall-Olkin, Journal of the Indian Statistical Association, 32, 35-
37.
11. Jana,P.K., Roy,D. (1994) Estimation of reliability under stress-strength
model in a bivariate exponential set-up, Calcutta Statistical. Association
Bulletin, 44, 175-181.
12. Mukherjee, S.P. and Saran, L.K. (1985) Estimation of failure probability
from a bivariate normal stress-strength distribution, Microelectronics and
Reliability, 25, 692-702.
13. Tokdar, S. T., Tass, R. E. (2010) Importance sampling: a review Wiley
Interdisciplinary Reviews: Computational Statistics 2, 54-60.
69 | I S I W S C 2 0 1 9