Page 127 - Contributed Paper Session (CPS) - Volume 2
P. 127
CPS1458 KHOO W.C et al.
References
1. Alzaid, A. A. and Al-Osh, M. (1990). An Integer-Valued pth-Order
Autoregressive Structure (INAR(p)) Process. Journal of Applied
Probability, 27(2), 314-324.
2. Box, G. E. P. and Jenkins, G. M. (1976). Time Series Analysis: Forecasting
and Control, San Francisco: Holden-Day.
3. Biswas, A., Song, P. X. -K. (2009). Discrete-Valued ARMA Processes.
Statistics and Probability Letters, 79, 1884-1889.
4. Du, J. G. and Li, Y. (1991). The Integer-Valued Autoregressive (INAR(p))
Model. Journal of Time Series Analysis, 12(2), 129-142.
5. Freeland, R. K. (1998). Statistical analysis of discrete time series with
applications to the analysis of workers compensation claims Data. Ph.D.
Thesis, The University of British Columbia, Canada.
6. Joe, H. (1996). Time Series Models with Univariate Margins in the
Convolution-Closed Infinitely Divisible Class. Journal of Applied
Probability 33 (3), 664-677.
7. Jacobs, P. A., Lewis, P. A. W. (1978b). Discrete Time Series Generated by
Mixture II: Asymptotic Properties. Journal of Royal Statistical Society B,
40, 222-228.
8. Jacobs, P. A., Lewis, P. A. W. (1978a). Discrete Time Series Generated by
Mixtures I: Correlation and Run Properties. Journal of Royal Statistical
Society B, 40, 94-105.
9. Khoo, W. C., Ong, S. H. and Biswas, A. (2017). Modeling Time Series of
Counts with A New Class of INAR(1) Model. Statistical Papers 58(2), 393-
416.
10. McKenzie, E. (1985). Some Simple Models for Discrete Variate Time
Series. Water Resources Bulletin 21 (4), 645-650.
11. Ristic, M. M. and Nastic, A. S. (2012). A mixed INAR(p) model. Journal of
Time Series Analysis 33, 903-915.
12. Weiß, C. H. (2008). The Combined INAR(p) Models for Time Series of
Counts. Statistics and Probability Letters 78, 1817-1822.
13. Weiß, C.H. (2008). Thinning operations for modeling time series of counts
– a survey. AStA Advances in Statistical Analysis 92 (3), 319-341.
14. Pegram, G. G. (1980). An Autoregressive Model for Multilag Markov
Chains. J. Appl. Probab, 17, 350-362.
15. Zhu, R., Joe, H. (2006). Modeling count data time series with Markov
processes based on Binomial Thinning. Journal of Time Series Analysis 27
(5), 725-738.
116 | I S I W S C 2 0 1 9